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• Mineral exploration: deeper targets and higher cost per 
discovery

• Utilization of all the available data in the decision-making 
process

Machine learning algorithms and advanced statistical 
methods are highly effective to identify the 
multidimensional relationships in big databases.

2. Objectives

Use rock geochemistry from Vazante-Paracatu District in 
Brazil to:

(1) Evaluate the sensitivity of prediction accuracy of
Random Forests for different types of treatment of the
data

(2) Gain insights about the geochemical processes which
may have implications in exploration
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3. Study Area
• Southern region of the 

Brasília Fold Belt, Western 
part of the São Francisco 
Craton, Minas Gerais, Brazil

Northern  Part – Vazante / 
Paracatu (VP)
• Sulfide Pb – Zn Deposits: 

Morro Agudo, pre-
production resources, 18.3 
Mt @5.08% Zn and 1.75 % Pb 
[2]

Southern Part – Vazante 
South (VS)
• Vazante Mine: Hypogene 

Zinc-silicate resources, 30.59 
Mt @ 21 Zn, 0.48 Pb%, 33.57 
Ag [3]
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Geochemical data were treated as described below:

• Censored values were replaced by:

(1) the half of the lower limit of detection (LLD) 
(2) the values calculated with a k-nearest neighbour 
approach (Aitchison distance – KNNA)

5. Methodology

Classification

6. Results

For the supervised classification task:

• Random Forest (RF), an ensemble tree machine learning 
algorithm to classify lithology by using geochemical data (Fig 3.)

Experiment Data Imputation Algorithm

1 Raw Half of LLD Decision Tree

1RF Raw Half of LLD Random Forest

2 CLR Half of LLD Decision Tree

2RF CLR Half of LLD Random Forest

3 Raw KNNA Decision Tree

3RF Raw KNNA Random Forest

4 CLR KNNA Decision Tree

4RF CLR KNNA Random Forest

• A decision tree classifier used as a benchmark to test the 
performance of Random Forest

• Total of 8 different classification experiments were conducted for 
each database (Table above)

• Each experiment simulated 100 times in order to report more 
robust accuracy scores

• For each simulation, databases were split into training (2/3) and test 
groups (1/3) randomly for unbiased estimation of accuracy

For unsupervised classification, principal component analysis was 
conducted on transformed data (clr)

7. Conclusion
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• For both VP and VS database, random forest classifier 
outperformed a basic decision tree classifier regardless of 
using raw or clr data

• Centered log transformation did not affect the prediction 
results considerably, however, it did change the cluster 
shapes in PCA results

• Imputation methods did not affect prediction results 
significantly

• Random Forest’s accuracy and precision increases with 
increasing sample size

• Confusion patterns might be an indication of the similarities 
in the genesis of ore bodies or rock types. This can help 
geologists to understand the underlying process

• In PCA of VS samples, the association of elevated MgO, 
CaO, Sr, C and loss on ignition characterize Carbonate rocks 
while elements like Zr, Hf, Ta, Nb and, REE characterize the 
detrital contribution 

• Mineralization within the siliciclastic domain (Serra do 
Garrote) captured in PCA by the association of As, C, Cu, 
Hg, Mo, Ni, Pb, Re, Sb, Se, S, Te, U, V, Zn

• In PCA of VP, the association of Zn, Cd, Hg, S, MnO, Pb, Se, 
Sn, Sb, Fe2O3, CaO, MgO, C characterize GHI and JKL ores 
while Sb, Fe2O3, Pb and S differentiates M, and BaO and 
REE indicates N ore bodies

• In the absence of key horizons in a drill hole, a rock sample 
can be located in stratigraphy by using its geochemistry

• The latter can be done with surface rock samples and used 
as proxies to ore bodies

Morro Agudo Sector (VP) (n = 182) 
& 100 Simulations

Vazante Sector (VS) (n = 407) 
& 100 Simulations

Fig 1. Location map of the study area 
(Cordeiro [2])

Fig 3. Schematic work flow of the Random Forest classifier. Modified from Harris et al. [4] 

?

Table 1. Summary of the available variables in 
both databases

Table 2. Summary of cases of simulations

Fig 2. Stratigraphic section of the 
Vazante sequence (Cordeiro [2])
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4. Data
• A small size (n = 182) 

database from Morro 
Agudo Sector  in VP 
(Sulfide Pb – Zn 
mineralization)

• A larger size (n= 407) 
database from 
Vazante Sector in VS 
(Zinc silicate 
mineralization)

Data Details
Analysis Results Raw and corrected (imputation and log transformation)
Major Oxides (14)
XRF

SiO2, Al2O3, Fe2O3, CaO, MgO, Na2O, K2O, Cr2O3, TiO2, MnO,
P2O5, BaO, SrO (Only Vazante Sector)

Multi Element -
ME-MS81 (31)

Ba, Ce, Cr, Cs, Dy, Er, Eu, Ga, Gd, Ge, Hf, Ho, La, Lu, Nb, Nd,
Pr, Rb, Sm, Sn, Sr, Ta, Tb, Th, Tm, U, V, W, Y, Yb, Zr

Multi Element -
ME-MS42 (10)

As, Bi, Hg, In, Re, Sb, Sc, Se, Te, Tl

Multi Element -
ME-4ACD8 (10)

Ag, Cd, Co, Cu, Li, Mo, Ni, Pb, Sc, Zn

Analytical Methods:
XRF - X-ray fluorescence analysis
4ACD8 - four acid digestion based 
analysis
MS - inductively coupled plasma 
mass spectrometry

1. Introduction

• Raw geochemical data transformed by using centered log 
transformation (clr) for closure (all components sum to a 
constant)
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where g(x) is the geometric mean of the composition

Decision Tree Random Forest
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RF
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RF

Average 
Accuracy

Count 100100100100

40%

100 100 100 100

47%

Mean 42 39 41 37 47 47 49 46
Std 7 6 6 6 6 6 6 6
Min 25 23 25 23 33 34 36 30
Median 42 39 41 38 46 46 48 46
Max 59 56 52 51 61 59 67 62

Decision Tree Random Forest

1 2 3 4
Average 
Accuracy

1-
RF

2-
RF

3-
RF

4-
RF

Average 
Accuracy

Count 100 100 100 100

71%

100 100 100 100

80%

Mean 73 71 71 69 81 81 79 80
Std 4 4 4 4 3 3 3 3
Min 63 59 61 57 73 73 71 73
Median 73 71 71 69 81 82 80 80
Max 82 81 80 79 86 87 87 87
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• Random Forest improved the prediction accuracy significantly:

Table 3 and Figure 4. Accuracy table and confusion matrix of the VP database (upper and lower left). Most of the confusion: GHI and JKL 
ore bodies. Accuracy is higher and variance is lower on VS (Right) – due to higher amount of sample

Carbonate 
Detrital
Contribution

Hydrothermal
Activity

Vazante Sector (VS) (n = 407)

• Lithological differences are 
clearly identified on PC1 vs 
PC2 plot

• Different carbonates tend to 
cluster slightly different 

• Mineralized Serra do 
Garrote – G1 samples have 
defined “Trend” associated 
with hydrothermal activity

• In unsupervised classification, the principal component analysis, following were observed:
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• GHI and JKL ore bodies are hard 
to distinguish – note that 
confusion was highest in these two 
units (Fig 4)

• Other ore bodies are clearly 
distinct after several PC plots

• Host rocks can be separated

Morro Agudo Sector (VP) (n = 182)

Fig 5. PCA Biplots - biplot of VS database (lower 
right – B2) with a biplot focused only Serra do 
Garrote (lower left – B1) and biplot of VP database 
(upper left - A)
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