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Predictive Geometallurgy and Geostatistics Lab 

Queen’s University 
 

Annual report 2022 
 

This report summarizes the ongoing research of the Predictive Geometallurgy and Geostatistics 

Laboratory at Queen’s University in Kingston, Ontario, Canada. 2021 was a challenging year, with 

continuous restrictions to meetings and limited group interactions. Despite these difficulties, the lab 

completed important and novel work. The delay in the release of this report is just another sign of the 

strain of the last couple of years, however, results are encouraging and the lab is doing important 

contributions to research and industry. 

This year, two students graduated, one Master of Applied Science and one Doctor of Philosophy, two new 

students joined the group. The following two theses were completed in this period: 

 Kasimcan Koruk, M.A.Sc. (Aug. 2022), “Definition of geological domains with an ensemble 
implementation of Support Vector Classification” 

 Alvaro Riquelme, Ph.D. (Sep. 2022), “Multivariate simulation using a locally varying 
coregionalization model” 

 

The hold on Sebastian Avalos Ph.D. thesis has been lifted after the successful filing of a patent: 

 Sebastian Avalos, Ph.D. (Sep. 2021), “Advanced predictive methods applied to geometallurgical 
modelling” 

 

The research group is currently composed of: 

 Sebastian Avalos, Post-Doc  

 David Casson, Ph.D. student 

 Soheil Kheirparast, M.A.Sc. student  

 Paula Larrondo, Ph.D. student 

 Tong Li, Visiting Ph.D. student 

 Alvaro Mariño, M.A.Sc. student 

 Noble Potakey, M.A.Sc. student 

 Carlos Moraga, Ph.D. student 
 

We continued collaboration with other faculty members and researchers, including: 

 Asli Sari, Assistant Professor – The Robert M. Buchan Department of Mining (Queen’s University). 
Dr. Sari and Dr. Ortiz co-supervised Soheil Kheirparast in his M.A.Sc. 

 Raimon Tolosana-Delgado, Senior Scientist (Helmholtz-Zentrum Dresden-Rossendorf). Dr. 
Tolosana-Delgado hosted a research internship of Sebastian Avalos. 

https://qspace.library.queensu.ca/handle/1974/30291
https://qspace.library.queensu.ca/handle/1974/30291
https://qspace.library.queensu.ca/handle/1974/30443
https://qspace.library.queensu.ca/handle/1974/30443
https://qspace.library.queensu.ca/handle/1974/29414
https://qspace.library.queensu.ca/handle/1974/29414
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 Brian Frank, Professor – Electrical and Computer Engineering (Queen’s University). Dr. Frank and 
Dr. Ortiz co-supervise Paula Larrondo in her Ph.D.  

Nine contributions are available this year, totaling 140 pages, with reviews on topics such as clustering 

methods, grade control, models for muck pile blast movement, generative adversarial networks (GANs), 

and interesting progress in non-Gaussian models, mineral prospectivity and bulk ore sorting. Industrial 

collaboration continues with SRK Consulting Canada and MineSense.  

As always, we welcome industrial and academic collaboration. This provides opportunities to fund new 

graduate students and novel research, and directly benefits industrial partners. If interested, please send 

a note to julian.ortiz@queensu.ca. 

 

 

Julian M. Ortiz 

Associate Professor, The Robert M. Buchan Department of Mining  

Director, Predictive Geometallurgy and Geostatistics Lab 

Queen’s University 

December 2022 

 

  

mailto:julian.ortiz@queensu.ca
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Journal and Conference Publications and Presentations 
 

Publications in book chapters, peer-reviewed journals and international conferences are listed below for 

2021. These are not included in this report, since the copyright belongs to the corresponding publishers, 

but can be requested for personal use or research purposes directly to julian.ortiz@queensu.ca. 

Patent 

1. Avalos SA, Ortiz JM (2022) Mine Scheduling Methods and Constructs, Provisional Patent US 

63/388,016, filed 07/19/2022.  

 

Book chapters  

1. Ortiz JM, Silva JF (2022) Entropy, in Encyclopedia of Mathematical Geosciences, Daya Sagar B, Cheng 

Q, McKinley J, Agterberg F (Eds.), Encyclopedia of Earth Sciences Series, Springer, Cham, 5 p. 

https://doi.org/10.1007/978-3-030-26050-7_102-1   

 

Journal papers   

1. Moraga C, Kracht W, Ortiz JM (2022) Process simulation to determine blending and residence time 

distribution in mineral processing plants, Minerals Engineering, 187: 107807. 

https://doi.org/10.1016/j.mineng.2022.107807   

2. Jelvez E, Morales N, Ortiz JM (2022) Stochastic final pit limits: an efficient frontier analysis under 

geological uncertainty in the open-pit mining industry, Mathematics, 10(1): 100. 

https://doi.org/10.3390/math10010100   

 

Conference papers and presentations   

1. Ortiz JM (2022) Predictive Modelling in Geometallurgy, in Geomet-Procemin 2022, Santiago, October 

5-7 2022. 

2. Avalos S, Ortiz JM (2022) Spatial multivariate morphing transformation applied to geometallurgical 

attributes, in Geomet-Procemin 2022, Santiago, October 5-7 2022. 

3. Riquelme A, Ortiz JM (2022) Simulation of complex multivariate relationships based on a non-

stationary coregionalization model, in 21st Annual Conference of the International Association for 

Mathematical Geosciences – IAMG 2022, Nancy, France, Aug 29-Sep 3, 2022.  

4. Koruk K, Ortiz JM (2022) Definition of geological domains with Ensemble Support Vector 

Classification, in 21st Annual Conference of the International Association for Mathematical 

Geosciences – IAMG 2022, Nancy, France, Aug 29-Sep 3, 2022.  

mailto:julian.ortiz@queensu.ca
https://doi.org/10.1007/978-3-030-26050-7_102-1
https://doi.org/10.1016/j.mineng.2022.107807
https://doi.org/10.3390/math10010100
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Nancy, France, Aug 29-Sep 3, 2022.  

6. Avalos S, Ortiz JM, Leuangthong O (2022) Multivariate morphing transformation: Fundamentals and 

challenges, in 21st Annual Conference of the International Association for Mathematical Geosciences 

– IAMG 2022, Nancy, France, Aug 29-Sep 3, 2022.  

7. Riquelme AI, Ortiz JM (2022) A Riemannian tool for clustering of geo-spatial multivariate data, in 

14th International Conference on Geostatistics for Environmental Applications – geoENV 2022, 

Parma, Italy, June 22-24, 2022. 

8. Larrondo P, Frank B, Ortiz J (2022) Automated topical extraction to aid in complex problem-solving 

feedback consistency in engineering design courses. Proceedings of the Canadian Engineering 

Education Association (CEEA). 

9. Koruk K, Ortiz JM (2022) Ensemble based domaining informed with unsupervised classification of 

geochemical data, CIM 2022 Convention, Vancouver, BC, May 1-4, 2022. 

10. Ortiz JM (2022) Predictive Geometallurgy and Geostatistics Lab, invited talk, XUST-Queen’s training 

program, December 1, 2022, online. 
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Conference posters   

1. Tolosana-Delgado R, Avalos S, van den Boogaart KG, Frenzel M, Ortiz JM, Pereira L, Riquelme A (2022) 

Modelling microstructures with flexible Laguerre Mosaics, in 21st Annual Conference of the 

International Association for Mathematical Geosciences – IAMG 2022, Nancy, France, Aug 29-Sep 3, 

2022.  

2. Riquelme AI, Ortiz JM (2022) Multivariate Simulation Using Locally Varying Corregionalization 

Models, poster, CIM 2022 Convention, Vancouver, BC, May 1-4, 2022. 
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Predictive modelling workflows in geometallurgy1 
Julian M. Ortiz (julian.ortiz@queensu.ca) 

Abstract 
Geometallurgy requires the integration of multiple data sources that are interrelated 
in complicated ways. Its aim is to provide models that link the spatial characterization 
of materials with process performance. These processes can be linked both to the 
mining extraction or ore and waste materials, as well as the processing of the ore, and 
even the disposal of the waste.  
In this paper, a review of the methods and tools used to create predictive models in 
geometallurgy is provided. Different modelling workflows are presented and some case 
studies are included to illustrate how to tackle problems related to geological 
modelling, resource estimation, mine planning and mineral processing modelling. The 
workflows provide a map of how to face a modelling problem. The tools used at each 
step can be adapted to the type and quantity of data available, as well as the complexity 
of the problem. More importantly, these workflows can be integrated in a model of the 
entire system. 
A review of the tools provided by statistical learning and geostatistics is included 
emphasizing the types of problems that can be tackled with each method. Also, the 
data requirements, challenges and limitations of the methods are described. Finally, 
these concepts are illustrated with practical applications, where the potential benefits 
obtained are highlighted as well as the assumptions and limitations.  

 

1. Introduction 
The sustainable management of mineral resources and reserves must maximize the benefits of the 

extraction of raw materials. These benefits involve economic revenues, as well as environmental and 

social aspects and ensure the continuous supply of metals and materials needed by society. Any mining 

operation combines diverse interconnected processes to go from in situ geological resources to final 

products that can be sold or used in the production of other materials and goods. In current operations, 

these processes are treated separately, managed independently, mostly predicted with deterministic 

models and updated in discrete time steps [Avalos, 2021]. This means that risks associated to the 

heterogeneity of these natural resources, as well as uncertainties linked to our incomplete knowledge of 

their properties and the associated processes, are not accounted for [Montiel et al., 2016]. The 

uncertainty is caused by the limited sampling information available to characterize the flows of materials 

in the mining system, as well as the complex nature of the physical and chemical processes these materials 

are subjected to recover the metals and materials of interest. 

                                                           
1 Cite as: Ortiz JM (2022) Predictive modelling workflows in geometallurgy, Predictive Geometallurgy and 
Geostatistics Lab, Queen’s University, Annual Report 2022, paper 2022-01, 8-19. 
 
This paper is an extended version of the paper “Predictive Modelling in Geometallurgy”, presented in the 18th 
International Conference on Mineral Processing and Geometallurgy. 

mailto:julian.ortiz@queensu.ca
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The sequential modelling of the processes in a mining system (resources, design, planning, drilling, 

blasting, loading, hauling, crushing, grinding, metallurgical processing) does not lend itself to their joint 

optimization [Ortiz et al., 2015]. In this paper, we present specific workflows for different stages of a 

mining system, and then discuss their possible integration and the advantages of this systemic modelling 

approach to geometallurgy. 

2. Geometallurgy: an expanded definition 
Geometallurgy aims at creating spatially-based predictive models by combining geological, mining and 

metallurgical information. These models are subjected to the mining, mineral processing and metallurgy 

processes and can be used anticipate their performance, control the processes and optimize the 

parameters and decisions involved [Ortiz et al., 2015]. Geometallurgy must be understood beyond process 

mineralogy, which has been the traditional context in which the term has been used [Dominy et al., 2018], 

and should account for the processes involved in the ore excavation.  

Geometallurgical modelling aims at characterizing these processes in an interconnected framework that 

transfers properties of materials from one process to the next, accounting for their time of extraction, 

local (space and time) properties (grades, mineralogy, physical properties), blending that occurs in each 

process, residence time distribution, mass balance, etc. Each process can be modelled to obtain a 

prediction of the properties of the output, including estimated values and uncertainty quantification. 

Importantly, the transference of this uncertainty from one stage to the next should be modelled, 

accounting for correlations, interactions and blending. These models can have different levels of 

sophistication and complexity from simple statistical predictions to phenomenologic models.  

A geometallurgical predictive model (which can be seen as a digital twin of the operation) can be created 

by combining realistic models of the different stages of the mining value chain, where particular inputs 

lead to outputs that feed other processes downstream. The resulting outputs can be calibrated with 

production information and be used to feedback into the models to enhance them [Benndorf and Jansen, 

2017]. Optimization and control of the entire system is only possible if a complete understanding of all 

the components and their interactions is achieved. 

3. Modelling workflows 
In order to put together a geometallurgical predictive model, each process must be modelled as a stand-

alone step, but all relevant inputs and outputs must be accounted for. Understanding which variables 

must be incorporated in each model is a result of specific domain knowledge. 

Examples of modelling workflows can be found in the literature, linked to specific conditions or problems 

solved through modelling. These workflows will change depending on the type of data available and the 

specific conditions of the operation. However, typically mining projects need to deal with the following 

steps: 

 Domaining 

 Block model construction 

 Mine planning and scheduling 

 Processing and recovery 
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Although this is a high-level classification of the typical steps, the workflows can be adapted to specific 

constraints or requirements of the operation, including, for example, blending, economic constraints, 

water and energy management, environmental constraints, etc. 

In the next sections, we review some possible workflows for each stage separately, and illustrate their 

modelling approaches, providing some real life illustrations of the results. 

Domaining 

The idea behind domaining is to identify subsets of samples with similar properties that can help create a 

spatially connected volume for a specific modelling purpose [Faraj and Ortiz, 2021]. Domains can be 

defined for resource, structural, or geometallurgical modelling, just to name a few. In each case, the 

relevant features change and the modeller must decide what aspects are relevant for the modelling goal, 

which is referred in Error! Reference source not found. as “domain knowledge”. Multiple tools can be 

used in the clustering stage [Fouedjio et al., 2018]: constrained optimization, k-means, Gaussian mixture 

models, geostatistical clustering, etc. In real projects, this is often done manually, by checking which 

geological properties of the samples control the mineralization (or any other attribute of interest being 

modelled). This is an ill-posed problem, since in reality, the mineral resources are not divided into true 

domains, so there is no way to check that our definition of clusters (and later of domains) is appropriate, 

other than by a posterior validation. 

For spatial modelling, once the samples have been labelled into one of 𝐾 clusters, any categorical 

geostatistical estimation or simulation method can be used to define the extent of the domains. For 

instance, indicator approaches, truncated Gaussian or pluriGaussian simulation, or multiple-point 

simulation [Chiles and Delfiner, 2012], can be used to generate one or more domains models. If a single 

“expected” domain model is generated the approach is termed deterministic. If multiple possible 

scenarios are built that depict the possible extent of these volumes, then this is called a stochastic model. 

 

Figure 1: Example workflow for domaining. 

An example of the results of an automated domaining approach is provided in Figure 2Error! Reference 

source not found., where sample data are labelled according to their alteration domains, inferred from 
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geochemical data. These labelled samples are then used to determine the domains, with uncertainty, 

through an ensemble support vector classification [Koruk and Ortiz, 2022]. This approach combines 

domain knowledge (used in the determination of which geochemical variables are relevant to the model 

at hand), a simplified optimization technique to assign samples to each cluster, controlled by a match to 

the parametric distribution of these variables in each domain, and a machine learning method for 

classification, which in this case is extended to provide multiple scenarios of the extent of the volumes 

classified in each domain. The output of this workflow, can be a stochastic model, represented by an 

ensemble of models of the domains, or as a single probabilistic model, i.e. where for each block, the 

probability of belonging to each category is quantified, or a deterministic model, represented by the most 

likely category in each block, determined through majority voting over the ensemble of models, or some 

other consensus. 

 

 

Figure 2: Samples are assigned to categories: distributional assumption (top left), clustering (top right). A probabilistic model is 
built with SVC using resampling and bagging (bottom).  

Block model construction 

Once the domains have been established, the construction of a spatial block model follows, by estimating 

or simulating the different attributes within each domain volume, constrained by the sample information 

belonging to that same domain. This is conventionally done with geostatistical tools such as kriging or 

conditional simulation. Accounting for multivariate relationships is key to capture interactions that are 

relevant for process modelling downstream. These multivariate relationships are both statistical, i.e. 

correlations between variables collocated, and spatial, measured through direct and cross-variograms 

between the different variables within each domain.  
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There are well established techniques for multivariate modelling, including geometallurgical attributes 

[Deutsch et al., 2015], compositional data (such as elemental or mineral proportions) [Tolosana-Delgado 

et al., 2019] or multiple variables with complex relationships [Barnett et al., 2014; Avalos et al., 2022]. 

Workflows for this stage are well-established and thoroughly documented in the literature. As an 

example, a typical workflow using a transformation into factors that can be modelled independently in 

space, is provided in Figure 3Error! Reference source not found.. The input considers multiple domain 

models (that account for uncertainty in the extent of the domains) and multivariate sample data 

representing grades. The result is a set of block models with the spatial distribution of the grade models, 

respecting their complex relationships, and their spatial continuity, and honouring the data. 

A bivariate example of this is illustrated in Figure 4, for two synthetic variables with a complex non-linear 

correlation. The original variables are transformed to “morphing factors”, which are spatially uncorrelated 

and can be simulated independently with any geostatistical simulation method. The back-mapping 

provides realizations that honour the data, and spatial and statistical relationship between the two 

attributes [Avalos et al., 2022]. This technique has been tested with up to 10 variables, providing excellent 

reproduction of the statistical and spatial correlations. 

 

Figure 3: Example workflow for block model construction. 

As with the domaining approach, the block model construction workflow allows for the generation of a 

deterministic or a stochastic output. The deterministic model, which is similar to an estimation, is obtained 

by locally averaging the realizations obtained through simulation. This is known as an E-type model. 

Alternatively, the realizations can be used to determine a local probability distribution at every location, 

or the full ensemble of realizations can be kept to input in subsequent steps. 

Finally, it is important to note how stochastic input domain models are used. Rather than propagating 

uncertainty by using each domain input model and creating an ensemble of realizations of grade 

distributions within these domains, a cascade approach is taken, where a single realization of the grades 

is generated for each domain model. In this fashion, if we have 100 domain models at the beginning, the 
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product of the block model construction stage is 100 models of grade distributions, each constrained by 

a different domain model. This allows us to sample the space of uncertainty with a limited number of 

models, avoiding the explosion in the number of models if these are nested. 

 

 

Figure 4: Multivariate block model construction. 

Mine planning and scheduling 

Mine planning and scheduling define the decision of extracting blocks and the sequence over time and 

space of this process. Planning must account for the uncertainty in the spatial distribution of the attributes 

of interest and multiple constraints related to their extraction (economic, operational, environmental, 

geometric, etc.). There are multiple approaches to optimizing the mine plan, including stochastic 

optimization [Dimitrakopoulos, 2011]. Scheduling can be done with stochastic integer programming 

accounting for uncertainty of the attributes [Morales et al., 2019], and constraints can be inputted in the 

model (see for example an approach to account for demand-side management for energy consumption 

[Diaz et al., 2016]). Some of the newer proposals involve reinforcement learning approaches to train the 

system optimizing sequential decision making [Avalos and Ortiz, 2021]. A workflow for a trained Deep Q-

Learning neural network is shown in Figure 5. A set of grades models are combined to provide a grades 

model with uncertainty, which along with production data is used to train a Deep Q-Network. The grades 

models, in this particular workflow, are processed into an E-type model and a model of the local variance, 

thus representing the block uncertainty distribution by these two parameters. The network then learns 
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the probability of extraction for each feasible block. Based on these probabilities, a decision about the 

next block to extract is made, and this is used to assess the quality of the decision and update the 

probabilities for the remaining blocks. The neural network evolves from a stage where different trials are 

applied (called exploration phase) so that it can learn what the effects of new decisions are, and slowly 

moves towards an exploitation phase, where mostly decisions whose outcomes are known, are applied. 

In this fashion, the network learns to make the best decisions and provides an optimized extraction 

sequence. Interestingly, this approach can also incorporate feedback from production, thus allowing a 

learning strategy that rewards decisions that in practice have a positive impact in the objective function.  

 

Figure 5: Example workflow for mine scheduling. 

The results of the methodology are illustrated in Figure 6, where a schedule is defined randomly initially 

and after the neural network learns the probabilities of extraction, based on its training, decides a better 

schedule that increases value in about 5% [Avalos and Ortiz, 2021]. 

At this stage, the uncertainty from domaining and from the grades distribution is accounted for. The 

optimization of the plan, considers these two sources of uncertainty and comes up with a single strategy 

tailored to manage the possibilities given by the available information. The resulting plan can then be 

applied to each one of the grades models, in order to assess the impact of the domains and grades 

uncertainty in the production outcome from the mine. These time series of blocks extracted in a fixed 

sequence, for each realization of the grades distribution, can be used as the processing streams inputted 

into the crusher and the processing plant.  

Processing and recovery 

As mentioned, the sequence of extraction and schedule from the mine plan provide the transfer function 

to go from the spatial domain to the time domain. The blocks extracted from the mine become truckloads 

fed to the processing streams. Transferring the uncertainty can be done by use of simulation or 

considering a multiGaussian kriging approach [Riquelme and Ortiz, 2021]. Once the time series 

characterizing the materials in each processing stream are available, the processing performance can be 
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predicted. Since there are many different processing flowsheets, models will vary. Examples of such 

models involve hardness prediction with deep learning [Avalos et al, 2020], AI driven air classification of 

particles [Otwinowski et al., 2022], deep learning froth flotation recovery prediction [Pu et al., 2020], and 

recovery prediction in leaching using machine learning [Flores and Leiva, 2021].  

 

Figure 6: Illustration of the schedule before and after training. 

 

An interesting compilation of models in mineral processing can be put together as a discrete event 

simulation [Moraga et al., 2022]. For each grades sequence coming from the expected schedule, the 

changes at each stage of the process can be modelled, in order to predict residence time distribution, 

particle size distribution and properties of the streams of concentrate and tailings in flotation. This is 

illustrated in Figure 7, where the processing stages are interconnected in a sequence, producing two 

outputs: concentrate and tailings. The models for crushing and grinding will vary depending on the 

equipment, type of circuit configuration and settings used. Similarly, flotation involves recirculation of 

streams, which have an effect on the resulting products. This can be modelled as well, for a particular 

configuration, as depicted in Figure 8. 

Modelling the processing stage allows for the prediction of blends that occur during grinding and flotation, 

and are an important input if the processing stage is to be controlled for optimum output. 

Integrated model 

From the workflows presented earlier, it is possible to create an integrated model from the original drilling 

data, to the processing stage, considering the concentrate as a product, and also allowing the 

management of the tailings. This is illustrated in Figure 9. 
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Figure 7: workflow for modelling performance during processing. 

 

Figure 8: workflow for modelling performance during processing, for a particular flotation circuit configuration. 
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Figure 9: Workflow of integrated process, from drillholes to concentrate. 
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4. Conclusions 
A mining system can be seen as a sequence of stages or processes. The actual ore deposit, mine and 

operation is modelled through the block model for resources, reserves and the mine extraction schedule. 

Mineral processing and the metallurgical process can also be modelled, accounting for the variability and 

uncertainty in the feed and in the corresponding process. All this information can be used to perform 

optimization and control over each stage of the process, but, most importantly, once the geometallurgical 

model is fully implemented and connected, the model can be optimized globally and multiple constraints 

can be incorporated in the decision making process. 

Given the complexity of stages and processes in mining, the behavior of each component of the system 

can only be approximated.  Real time sensors, composited measurements, and soft sensors can be used 

to update the status of the model. This predicted output must be compared to other measurements of 

the actual output, for the models to learn. Feedback must be constant to keep models updated at a time 

scale relevant to decision making. Prediction should incorporate uncertainty as a key factor, to ensure the 

properties of the final product and the waste are anticipated. This approach ensures all considerations 

are accounted for when extracting raw materials and recovering the elements of interest, thus making 

this process more sustainable. 
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Testing a new sequential isofactorial simulation algorithm1 
David Casson (3drc1@queensu.ca) 

Julian M. Ortiz (julian.ortiz@queensu.ca) 

Abstract 
Existing geostatistical simulation approaches frequently rely on an assumption of 
Gaussianity or a computationally intense interpolation method to produce simulation 
realizations. These simulation methods encounter challenges in reflecting the 
attributes of sample data set exhibiting skewed distribution or non diffusive (clustered) 
properties. A new simulation algorithm has been developed, following the Sequential 
Isofactorial concept identified by Emery (2002). The simulation algorithm, referred to 
as the Sequential Isofactorial Algorithm (“SIA”) allows for choice of a multivariate 
Gaussian or multivariate gamma based model to reflect a symmetrical or skewed 
distribution respectively. The SIA also incorporates a choice of destructuration 
coefficient reflecting varying degrees of clustering in the data (non diffusiveness in the 
multivariate distribution). Initial results from conditional simulation with the SIA 
utilizing a handful of conditioning data points suggest the results reflect the attributes 
of the chosen model, exhibiting the appropriate histogram, variogram and clustering. 
A comparison to sequential Gaussian simulation (“SGS”) also creates an intuitive result, 
with the new algorithm showing greater variance in realizations. The SGS algorithm is 
constrained to produce a Gaussian local conditional cumulative distribution function 
with mean based on local conditioning data and variance independent on the sample 
values, only dependent on the spatial configuration of the information. The SIA (under 
a Gaussian diffusive model) also produces a Gaussian local CCDF with mean based on 
local conditioning data, however, the variance is dependent on the variance of the local 
conditioning data values. 
 

 

1. Introduction 

1.1. Mineral Resource Estimation and Traditional Simulation Techniques 
Traditionally, the qualified person completing a Mineral Resource estimate applied kriging to arrive at a 

best estimate for mineral resource grade and tonnage. Kriging is a deterministic method unable to provide 

a relevant measure of uncertainty associated with its deterministic estimates. The qualified person would 

classify the mineral resource as measured, indicated, or inferred based on personal experience and 

industry association guidance related to drill hole spacing and deposit type.  

Simulation provides a quantification of uncertainty in resource modelling. This allows an estimator to 

arrive at a quantitative view of how probable it is that a given block has a given value (e.g., probability 

that grade of block is above cut off). This probabilistic estimate of uncertainty can be carried through the 

                                                           
1 Cite as: Casson D., Ortiz J. M. (2022) Testing a new sequential isofactorial simulation algorithm, Predictive 
Geometallurgy and Geostatistics Lab, Queen’s University, Annual Report 2022, paper 2022-02, 20-46. 

mailto:3drc1@queensu.ca
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mine design and operation to make better decisions, understanding the range of possible operational and 

financial outcomes and associated likelihood.  

Commonly applied simulation techniques include Sequential Gaussian Simulation and Sequential 

Indicator Simulation. Both these sequential simulation methods require a random draw from an estimated 

Conditional Cumulative Distribution Function (“CCDF”) at unsampled locations. The CCDF, which is based 

on information in a neighborhood deemed to be relevant, reflects the probability that the unknown value 

at the location in question is below any value in its possible range. Simulation will not be successful if the 

CCDF is not accurate. Sequential Gaussian Simulation relies on the assumption that the regionalized 

variable under study is multiGaussian in nature. This is often not true. Simulation will also not be 

successful if it is not practical to implement. Sequential Indicator Simulation makes no assumption on the 

model of the variable under study but requires computation and modelling of many indicator variograms 

which makes it a cumbersome approach and challenging to implement in practice. Sequential Indicator 

Simulation also fails to account for cross correlation of indicator values at various thresholds, resulting in 

a sub-optimal model for the local CCDF (Emery and Ortiz, 2004; Machuca-Mory et al., 2008). 

1.2. Context on Developed Simulation Isofactorial Algorithm 
This broader research effort proposes to create a practical tool to choose either a multivariate Gamma or 

multivariate Gaussian random function model and associated parameters including level of 

destructuration based on observed properties of the available sample data. The “informed selection” of 

random function model, as shown in Figure 1 below can be applied in simulation of ore grades through 

the SIA. Importantly, this work will empirically test the relative success of this approach on partially 

sampled but known exhaustive data sets. Results will be compared against the exhaustive data set as well 

as simulation results obtained when traditional sequential Gaussian simulation is applied to the same 

sampled data set. 

Figure 1: Illustration of Random Function Model Parameter Selection 
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1.3. Disjunctive Kriging to Model Gaussian or Gamma Local CCDF Functions  
The Sequential Isofactorial Algorithm (“SIA”) relies on disjunctive kriging based sequential simulation 

utilizing asymptotic polynomial expansions to model local conditional cumulative distribution functions 

(“CCDF’s”). The polynomial expansion values calculated for sample values/locations can be used in 

conjunction with simple kriging to determine the transformed (e.g., normal score or “gamma score”) value 

at an unsampled location. Disjunctive kriging is equivalent to simple co-kriging of the polynomial 

expansion terms. The specific polynomial expansions considered are orthogonal basis and the covariance 

between polynomials of different orders is zero. As a result, disjunctive kriging becomes simple kriging of 

the polynomial values for the transformed data values and then a linear weighted sum of the resulting 

polynomial values across orders. Disjunctive kriging is the equivalent of full indicator co-kriging but avoids 

the challenges of developing a workable model of co-regionalization for the indicator thresholds. This 

approach allows for the calculation of an expected value at an unsampled location based on statistical 

distance of nearby data points and reflecting the local conditioning data itself as embedded in the 

polynomial expansion terms at nearby sampled locations. The polynomial approximation technique can 

be used to define an expression for the local CCDF. Polynomial expansions may reflect a choice of 

multivariate random function family. The approach can be applied to sequentially simulate non 

multiGaussian data sets, such as multi-gamma data sets. 

1.4. Randomizing Correlation Coefficient to Reflect Clustering of Values  
Emery (2008) identified that the destructuration of grade (i.e., non diffusiveness of the random function 

model) can be reflected in simulation realizations by “randomizing” the correlation coefficient used in the 

disjunctive kriging process at each order of the polynomial expansion. Chiles and Delfiner (2012) provide 

a good overview of this technique. This approach takes the pure Gaussian and Gamma model and extends 

them to the more generalized “Hermitian” and “Laguerrian” models respectively. Without this 

adjustment, the Gaussian and Gamma models would be described as pure diffusive models. This diffusive 

property requires that the correlogram of the polynomials of order “p” are equal to the correlogram of 

the variable raised to the power p. Practically, the diffusive property means that sharp transitions (e.g., 

connectivity of extreme values) cannot be reflected in the model. In a diffusive model the transition 

between data points of different values will be gradual vs. abrupt. This is due to the higher order 

correlograms trending to zero as the power p increases (pure nugget). The incorporation of 

destructuration allows higher order terms to have greater weighting and, as a result, creates potential for 

sharper (non-diffuse) transitions, that appear in data sets as clustering of values.  

2. Simulation Algorithm 

2.1. Isofactorial Simulation 
Polynomial expansion based disjunctive kriging can be used to define an expression for the local CCDF. 

This allows for the local CCDF to reflect the choice of bivariate random function family.  Ortiz (2004) 

provides a good overview of fitting a finite function (any finite function is acceptable) with an expansion 

of Hermite Polynomials. A similar approach can be used to fit a finite function with an expansion of 

Laguerrian Polynomials. 

The polynomials up to a selected order “N” are calculated at all sampled locations based on normal score 

or gamma score values. A variogram model is fitted to values. The covariance between polynomials of an 
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order N is based on the variogram with the resulting correlogram value raised to the power “N”. Simple 

kriging is completed to solve for the numerical Hermitian or Laguerrian polynomial values of each order 

at the unsampled location. 

 

For a given unsampled location we now have a set of numerical values for the polynomials at each order 

N. These polynomial values form the building blocks for the local CCDF at the unsampled location, 

effectively “coding” the information contained in the conditioning values (values and variance). The local 

CCDF is a weighted sum of these polynomial values. The weightings for each order polynomial in the CCDF 

are derived based on an expansion of the indicator function (i.e., probability value is less than or equal to 

a given threshold). The result is an equation for the CCDF value at an unsampled location as a function of 

the actual (but unknown) random variable value at that location.  

2.2. Randomizing the Correlation Coefficient 
The above procedure for disjunctive kriging considers only the case of no destructuration (i.e., diffusive 

models) as the correlograms of various orders are simply the correlogram raised to the power “N”. This 

process can be adjusted to consider non-diffusive models. This is accomplished by a randomization of 

correlogram at higher orders using a beta distribution whose form is dictated by a specific scalar factor. 

As the scalar factor varies between zero and infinite, the model varies between the diffusive and non-

diffusive (mosaic) case. In effect, as the model moves away from a pure diffusive model, greater weight is 

given to higher order expansions, resulting in a “tighter” local CCDF with less variance around its mean 

(i.e., sampling form the CCDF is more likely to yield a value closer to the local conditional mean and less 

informed by the broader background global mean). The incorporation of destructuration is accomplished 

by this change to the correlogram used in simple kriging of the polynomial values. The resulting numeric 

polynomial values kriged for a given unsampled location reflect both the underlying choice of bivariate 

family (i.e., Gaussian or Gamma) and a chosen amount of destructuration (clustering).  

2.3. Sequential Simulation Algorithm 
As described above, we can use the Isofactorial disjunctive kriging approach to create an equation for the 

local CCDF value as a function of the unknown underlying value. Sequential simulation draws a random 

number between zero and one and assumes this to be the CCDF value. Because the CCDF (by definition) 

is a monotonic function, a guess and check bounding algorithm was designed to iteratively determine the 

corresponding actual variable value that the CCDF random draw corresponds to (within a specified 

tolerance). The algorithm for solving the underlying value that corresponds to the randomly drawn CCDF 

value is described below. 

1. Complete a random draw between one and zero for the simulated CCDF percentile value 
(“simulated percentile”) 

2. Based on range of known values (i.e., normal or gamma score values at sample locations) select a 
maximum and minimum possible value 

3. For each of the maximum value, minimum value and midpoint value calculate the CCDF percentile 
using the modeled local CCDF function 

4. Compare the simulated percentile value to the percentile value calculated at maximum, minimum 
and midpoint of the underlying normal or gamma scores 
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5. If simulated percentile value is within an acceptable tolerance of one of these percentile values, 
set the associated underlying normal score value as the simulated normal or gamma score value 
at that location, otherwise: 

a. Determine if the simulated CCDF value lies above or below the midpoint CCDF value, if 
above, set the minimum underlying value to the midpoint value, if below set the 
maximum underlying value to the midpoint value 

b. Go back to step 3 using this new minimum, maximum and midpoint value for the 
underlying 

c. Repeat until simulated percentile value is within acceptable tolerance of maximum, 
minimum or midpoint CCDF values and when it is set the simulated underlying value to 
the corresponding minimum, maximum or midpoint underlying value 

Once the above algorithm is complete, we move (randomly) to the next unsampled location and repeat 

the algorithm considering both sampled locations and previously simulated locations in the neighborhood 

of the location being simulated. 

3. Results 

3.1. Examining Local CCDF Curves 
A small five by three matrix was populated by randomly drawn values with three “unsampled” locations 

left blank in the array. This simple data set was used to check that modelled local CCDF curves were 

behaving in a manner that was intuitively expected. The results are shown below in figures 2, 3, 4 and 5.  

Figure 2: CCDF Curves at Unsampled Points Demonstrating Impact of Conditioning Data 
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Figure 3: Illustration of CCDF Curves under Laguerrian cases with varying shape assumption. 

 

 

Figure 4: Illustration of CCDF Curves under Hermitian case with varying order of expansion 
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Figure 5: Illustration of CCDF curves at 1st simulated node under Hermitian and Laguerrian cases with varying destructuration 

 

 

 

3.2. Comparison of SIA to Sequential Gaussian Simulation 
Fifty simulation realizations on a 50x50 grid using the same conditioning data point were run with both 

Sequential Isofactorial Algorithm (“SIA”) (Gaussian pure diffusive model) and traditional gslib SGSIM 

(“SGS”). 

 Single conditioning data point set at center of matrix of 0.2 

 Lognormal reference distribution used resulting in normal score conditioning data point of ~-1.6 

(based on lognormal percentile of 0.2 value) 

 Spherical variogram with range of 8, nugget of 0.1 

 Search radius of 12  

While SIA results generally match those of SGS, SIA displays considerably greater variance than SGS, 

evidenced in variogram sills, conditional variance map and simulation realizations. This is driven by the 

fact that SGSIM is limited to a Gaussian CDF at any node, with variance obtained by simple kriging, hence 

independent of the sample values. In the SIA algorithm, the local CCDF’s are built from the polynomial 

expansion. It is observed that the first term in the isofactorial expansion is the standard distribution, the 

second term adjusts for local mean, and subsequent terms adjust for the specific characteristics of the 

local conditioning data (e.g., a high variance in local conditioning data is reflected in the local CCDF curve 

being lower slope). The resulting variance of the CCDF depends on the particular sample values. 

Simulation results (in transformed normal score) are shown below in figure 6, 7, 8, 9 with SGSIM results 

on the left and SIA results on the right.  
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Figure 6: Comparison of SGS and SIA Realizations and Average (E-Type) 
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Figure 7: Comparison of SGS and SIA Conditional Variance 

 

 

 

Figure 8: Comparison of SGS and SIA Experimental Variograms 

 

 

  



 
© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 29 

 

Figure 9: Comparison of SGS and SIA Histograms from Simulation Test 

 

 

The simulation results back-transformed with lognormal reference distribution to be raw values are 

shown below with SGS results on the left and SIA results on the right in figures 10, 11 and 12. 

Figure 10: Comparison of SGS and SIA Raw Realizations and Average (E-Type) 
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Figure 11: Comparison of SGS and SIA Raw Conditional Variance 

 

 

Figure 12: Comparison of SGS and SIA Raw Histograms 

  

 

 

A second experiment was run using a larger variogram range. The results showed increased continuity in 

both SIA and SGS results as shown below. 

Wider distribution 

reflected in back 

transformed data also 



 
© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 31 

 

Figure 13: Comparison of SGS and SIA Simulations with Increased Variogram Range; Realizations and Average (E-Type) 

 

 
Figure 14: Comparison of SGS and SIA Simulations with Increased Variogram Range Conditional Variance 

 

The cause of variability increases in the SIA realizations relative to the SGS realizations is described further. 

The local CCDF form under SIA is impacted by both the mean and the variance of the conditioning data. 

This is illustrated below using the SIA algorithm. First a local CCDF is created conditioned to a uniform set 
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of zero values, second a uniform value of negative 0.5 is used for all adjacent conditioning points (it can 

be seen below in figure 15 that SIA behaves like SGS and simply shifts the curve to the new mean). Finally, 

a curve with the same local mean as the first curve (0.0) but a much higher variance is shown to result 

from conditioning data with the same zero mean but much higher variance.  

Figure 15: Comparison of SGS and SIA Simulations with Increased Variogram Range Conditional Variance 

 

 

3.3. Examining Variance in SIA Results 
A further examination of the conditional variance relative to various model input parameters was 

conducted. 
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Figure 16: Conditional variance of 50 x 50 simulation with single conditioning point showing gradual increase of conditional 
variance away from conditioning data point 

 

 
 

Figure 17: Experimental Variograms of 50 x 50 simulation with single conditioning point 
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A number of other scenarios were examined on 25 x 25 grids to review impact of assumptions on variance 

as shown in map of conditional variance and experimental variograms for the set of realizations. 

Hypothesis 1: less smooth conditional variance around the conditioning data point in SIA driven by the 

fact that starting with a low value creates greater dispersion of samples and a broader curve. This also 

drives higher overall variance in the realizations 

Set Up 1  

 Variogram Range and search radius of 8 

 Conditioning data point -1.6 normal score (0.2 lognormal) 

 50 simulations 
 
 

Figure 18: Conditional variance map and experimental variograms for set up 1 

 

 

Set Up 2  

 Variogram Range and search radius of 8 

 Conditioning data point 0.0 normal score (1.0 lognormal) 

 50 simulations 
 

Relative to set up 1, the use of a central conditioning data point instead of a low value conditioning data 

point smooths the conditional variance around the conditioning data point as anticipated. Overall 

variability also appears reduced slightly in the variograms. 
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Figure 19: Conditional variance map and experimental variograms for set up 2 showing reduced variance from non-extreme 
conditioning values 

  

 

Hypothesis 2: Variogram range should be correlated with variability. A short variogram range should 

result in lower variance (i.e. lower variogram sill) as by definition, conditioning data variance at any given 

point likely to be lower (fewer widely spaced values expected in the covariance matrix). 

Set Up 3 

 Variogram Range and search radius of 4 

 Conditioning data point 0.0 normal score (1.0 lognormal) 

 50 simulations 
 

Figure 20: Conditional variance map and experimental variograms for set up 3 showing reduced variance from lower search 
radius and variogram range 
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Relative to set up 2, the use of a shorter variogram range reduces the variance in each realization as shown 

in the experimental variograms that cluster more evenly around the modelled variogram. Conditional 

variance is also smooth over a shorter range given the lower variogram range. 

Hypothesis 3: increasing number of simulations should smooth conditional variance map 

Set Up 4 

 Variogram Range and search radius of 4 

 Conditioning data point 0.0 normal score (1.0 lognormal) 

 150 simulations 
 

Figure 21: Conditional variance map and experimental variograms for set up 4  

 

 

Relative to set up 3, the use of a greater number of simulations significantly smooths the conditional 

variance map. 

 

3.4. Comparison of Random Function Models 
A blank 20 x 20 array was initialized. Nine conditioning data points were assigned. The conditioning data 

is shown below.  
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Figure 22: Conditioning data for random function model comparison 

 

 

The SIA simulation algorithm was then run over the conditioning data for four scenarios: 

A) Pure Diffusive Gaussian Model 

B) Pure Diffusive Gamma Model (Shape of 2) 

C) Gaussian Model with Destructuration Coefficient of 0.0001 

D) Gamma Model with Destructuration Coefficient of 0.0001 (Shape of 2) 

In each case, 50 simulations were completed producing 50 realizations of the gamma or Gaussian score 

data and 50 realizations of the back transformed raw data. A simple spherical variogram model was 

assumed with range of 5 units and 0.1 nugget (total sill is 1.0). The results for the four cases are shown 

below in figure 23 to 29. 
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Figure 23: Simulation realizations from four random function model assumptions; top left is Gaussian diffusive, top right is 
gamma diffusive, bottom left is Gaussian non diffusive and bottom right is gamma non diffusive. 
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Figure 24: Simulation realization average (E-type) from four random function model assumptions; top left is Gaussian diffusive, 
top right is gamma diffusive, bottom left is Gaussian non diffusive and bottom right is gamma non diffusive. 
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Figure 25: Simulation realization histograms from four random function model assumptions; top left is Gaussian diffusive, top 
right is gamma diffusive, bottom left is Gaussian non diffusive and bottom right is gamma non diffusive. 

 

 

 

Figure 26: Conditional variance from four random function model assumptions; top left is Gaussian diffusive, top right is gamma 
diffusive, bottom left is Gaussian non diffusive and bottom right is gamma non diffusive. 
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Figure 27: Back transformed average (E-type) of 50 simulations from four random function model assumptions; top left is 
Gaussian diffusive, top right is gamma diffusive, bottom left is Gaussian non diffusive and bottom right is gamma non diffusive. 
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Figure 28: Back transformed conditional variance from four random function model assumptions; top left is Gaussian diffusive, 
top right is gamma diffusive, bottom left is Gaussian non diffusive and bottom right is gamma non diffusive. 

 

 

  



 
© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 43 

 

Figure 29: Back transformed conditional variance vs. average (E-Type) from four random function model assumptions; top left is 
Gaussian diffusive, top right is gamma diffusive, bottom left is Gaussian non diffusive and bottom right is gamma non diffusive. 

 

 

The Gamma model with shape two has a CDF with a lower slope than pure Gaussian, so in general has 

slightly more variability in simulation. Additionally, conditioning data (in particular extreme conditioning 

data) bends the local CCDF curve outward creating a more random (variable) simulation draw, vs the 

Gaussian curve which not only bends outward to accommodate extreme conditioning data but also 

recenters itself based on the conditioning data. The result is higher conditional variance at higher values 

for Gamma models as shown in scatterplot of E-Type vs conditional variance. For similar reasons described 

above, in situations with extreme conditioning data, the local gamma CCDF curve becomes quite variable 

(i.e., low slope) which reduces the impact of tightening the corners of the local CCDF to account for 

clustering (relative to a Gaussian local CCDF that translates horizontally to account for extreme 

conditioning data). 

 

3.5. Illustrative Analysis of a Sampled Data Set 
A raw 128 x 128 grey scale image was selected and randomly sampled as shown below in figure 31.  
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Figure 30: Original Grey Scale Data Set and Randomly Sampled Data Set 

 

 

A single simulation realization was run using an assumed spherical model with range of 5 and nugget of 

0.1. The simulation was run using a gamma model and a destructuration coefficient of 0.00001. The search 

radius was set to 4 and the minimum points was set to 1. 

 

Figure 31: Single Simulation Realization of Unsampled Values Using SIA Algorithm 

 

 

4. Conclusions 
The SIA algorithm produces intuitive results that deliver expected behavior in both histogram and 

variogram as well as conditional variance. The algorithm produces distinct results for Gaussian and gamma 

models and clearly shows the impact of destructuration through clustering of values and sharp 

boundaries. These initial results suggest that SIA may provide an effective tool to capture a greater range 

of random function models in simulation and measurement of uncertainty.  
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Defining geological units using geochemical data and unsupervised 

machine learning1 
Noble E. Potakey (n.potakey@queensu.ca) 

Julian M. Ortiz (julian.ortiz@queensu.ca) 

Abstract 
One of the preliminary and arguably the most crucial step in a mineral resource 
evaluation campaign is the determination of the geological domains. Conventional 
geological methods establish domains primarily by grade zoning or spatial clustering 
techniques. Even though information about the geology is recorded, most model-based 
domains do not make much of the geological information derived from logging. 
Domains are best established with the geological information supported by an accurate 
statistical analysis of the geochemical data and a good understanding of the deposit. 
The advent of machine learning techniques such as cluster analysis has advanced this 
course by providing algorithms that can handle large volumes of multivariate data and 
try to reproduce geological domains. This paper shows the application of a model-
based cluster analysis as a machine learning tool to an exploratory drill hole data set 
from an undisclosed copper porphyry deposit. The K means algorithm, which was 
applied in this study utilizes the continuous nature of the non-categorical variables to 
establish domains. The algorithm generated spatial clusters which had some 
correlation with the alteration unit even though a confusion matrix revealed the flaws 
of the method in misclassifying most of the geological units. The choice of the most 
appropriate number of clusters (domains) to be formed, as well as the selection of 
variables to drive the clustering process can be challenging when performing k means 
clustering, and the appraisal of an expert is still necessary, as the results are subjective. 

 

1. Introduction 
The mining world has not had enough of mineral exploration. Geological mapping, geophysical 

investigation, sampling of outcrops, logging of drill cores are examples of exploratory data that needs to 

be analyzed leaving geologists and engineers overwhelmed with large number of variables. Among these 

data collected are categorical variables about the lithology, alteration and mineralization of an ore body 

which is largely obtained from core logging and after measuring several physical, chemical, and 

mineralogical properties of the rock (Bosch et al., 2002). Knowledge about these geological units is 

important because domains are traditionally established based on them. Domaining in mineral resource 

evaluation is a big step in mining because it serves as a backbone for subsequent geostatistical estimation 

and simulation of the ore body. A poor classification of these domains can lead to the mixing of 

populations, which can result in bad resource estimates, endangering the valuation of grades and 

tonnages (Emery & Ortiz, 2005). A simulated model of an ore body will be a success or failure depending 
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on the accuracy of the domains established. A domain is formed when an ore body is partitioned into 

groups of similar characteristics. For example, groups of high element concentration or groups of low rock 

hardness can form a domain. 

Domains are best established with the geological information derived from logging supported by an 

accurate statistical analysis of the geochemical data and a good understanding of the deposit. However, 

in most model-based domains, attention is not really given to the geological information when 

characterizing different mineralized zones even though it is proven that ore grades vary in relation to 

changes in the geological properties such as mineralogy, lithology and alterations (Yasrebi et al., 2013). 

Despite the non-reliance of geological information to create domains in most mining environments, it 

remains one of the fundamental information to building a good domain (Sterk et al., 2019). In the context 

of unsupervised machine learning, cluster analysis emerges as an efficient tool in classifying sample points 

based on the intrinsic properties of the input variables. K means algorithm clusters data by grouping 

sample into clusters of equal variances thereby minimizing a phenomenon known as the inertia or within-

cluster sum-of-squares (Adams, 2018). This results in clusters that contain objects with similar features 

and at the same time different from objects belonging to a different cluster. Although the algorithm 

clusters based on statistical parameters, knowledge about the deposit was used to select variables to drive 

the clustering process based on their significance to the geological units. For instance, most of the 

variables in our data were attached to the alteration type and hence variables that are trace elements to 

the porphyry copper deposit were selected for clustering (Mg, Al, Ga, Li, SC, V). This was done to derive a 

fast, better performing, and easy to understand model. 

An important factor in K means clustering is the choice of the optimal number of clusters (Moreira et al., 

2021). This paper addresses this issue, applying and further discussing some of the methods that can be 

applied as well as the difficulties found when choosing the best configuration of the clusters. The model 

is validated by comparing the clustered data with logged geological units. Furthermore, a confusion matrix 

is computed to analyze the errors of misclassification. It is an expectation that the clustered geochemical 

data reflects the geology. Proven methods for verifying the spatial relationship of the clusters are rarely 

mentioned in the literature, other than just applying a visual examination of the results.   

The work has been divided in three sections. First, we show the exploratory data analysis for selected 

variables and their distribution in space. This included the histograms and probability plots of continuous 

and categorical variables. Secondly, we performed K means clustering of selected variables to drive the 

clustering based on their relevance to the alteration unit. And finally, the validation of the clustered 

model.  

2. Exploratory Data Analysis (EDA)  
Exploration data analysis forms an essential part of this project. The exploratory data was de-surveyed 

with a 15m run length compositing while breaking intervals by geology for all drill holes using Vulcan 

software. Data analysis was done using the python programming software. The data contained 1898 drill 

holes from a porphyry copper deposit with 50 continuous variables made of 50 geochemical elements and 

three categorical variables (lithology, alteration, and mineralogy). A total of 21,416 composite samples 

with assay results were created with 20, 19 and 25 different lithologies, alterations and mineralogy 

respectively. Deep samples beyond the depth of 1200m were removed and variables whose 

concentrations were unaccounted for were also not considered. The following table shows a summary 
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statistic of some of the variables in the dataset for brevity. The abbreviations “Lito”, “Alt” and “Minz” 

mean Lithology, Alteration and Mineralization respectively. 

Table 1 Summary statistics exploratory data. Note that it does not show all the features of the database. 

 

Figure 1 below shows the results of the first to third quartiles of all 50 elements to provide us a fair idea 

of the relationship between the dominant variables and the less dominant ones. 

The concentration of copper stands out with extremely high values especially from its third quartile to the 

maximum. The cumulative probability plot of Cu values shows a fairly log normal distribution with 

consistently high detection limits of the element as shown in figure 3. The extreme high concentrations 

of elements could be outliers, measurement or samples errors, or values beyond the detection limit. The 

negative minimum values of sample 1 (Au) are samples values that were unaccounted for and that was 

not considered for analysis. 

   

 

 

 

 

 

 

 

 

Figure 1 Relatively high Cu concentrations compared other elements. 

count unique top freq mean std min 25% 50% 75% max

Dhid 21416

Midx 21416 NaN NaN NaN 14971.1 18049.1

Midy 21416 NaN NaN NaN 105792.3 107625.6

Midz 21416 NaN NaN NaN 1833.9 3110.2

Length 21416 NaN NaN NaN 0.04 15

From 21416 NaN NaN NaN 0 1197.45

To 21416 NaN NaN NaN 0.4 1198.2

Lito 21416 19 50 9603 NaN NaN NaN NaN NaN NaN NaN

Alt 21416 17 51 5621 NaN NaN NaN NaN NaN NaN NaN

Minz 21416 25 70 7712 NaN NaN NaN NaN NaN NaN NaN

Cu_ppm 21416 NaN NaN NaN 6112.9 2777.7 46.8 3972 5950 8710 10000

Mo_ppm 21416 NaN NaN NaN 92.04652 119.8602 0.45 34.9175 64.7745 113 2890

Mg_ppm 21416 NaN NaN NaN 0.442924 0.558493 0.01 0.03 0.094 0.81 3.033

Al_ppm 21416 NaN NaN NaN 0.980977 0.661739 0.06 0.46 0.74 1.42 4.519

Ga_ppm 21416 NaN NaN NaN 2.591729 2.012614 0.093 1 1.8 3.80525 13.35
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The following figures represent the box plot of the distribution of copper present in each geological 

category. This helps us to see the distribution in detail and help identify dominant terrains where our 

focus should be. Rock code 31, 33 and 50 are the dominant lithologies which host majority of the high 

grades. Alteration codes 50 and 51 stand out while 50 and 70 are the dominant mineralization codes. 

Grades of copper are distributed across the features in all three categories and a few outlier values are 

noted. 

 

 

 

Figure 2 Copper distribution based on the three categories in different features 
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Figure 3 Probability plot of Cu values (top) and Histogram Cr, Cs, Ga and Cu distribution (below) 

In the probability plot in figure 4, the variables show a clearer distinction of the populations in the 

alteration types, a characteristic which is not obvious in the other geological units. This suggests that the 

alteration is a huge factor when establishing domains and the distribution of most of the elements may 

vary by alteration. 

Finally, the spatial distribution of the samples was also visualized in two dimensions as shown in figure 5, 

with preferential sampling on high-value areas, especially on its central portion, where it shows a north-

east south-west trend of high values. 
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Figure 4 Distribution of Mn, Zn, Mg and Y by alteration. Two distinct populations can be observed 

 

Figure 5 Location map of samples with copper concentration (left) and the various alterations units (right) 

From the figures, alteration type 52 seems to be dominant alteration which host most of the high-grade 

copper values. Alteration type -99 is an unverified alteration and hence not regarded. 

To understand the spatial correlation between elements, a correlation matrix was computed which 

showed poor correlation of copper with other elements in the matrix even though some trace elements 

of the deposit show some form of correlation with each other. Mg, Al, Ga shows a good correlation. 
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Figure 6 Correlation matrix of 50 continuous variables (top) and scatter plot showing correlation of La and Ce, and 

Al and Mg respectively. Color codes didn’t matter at this point. 

In summary, the structure of the data is well understood. Deep samples are removed and variables whose 

results are unaccounted for are redundant. We see how the samples are distributed in space.  

In the next section, unsupervised classification using K means will be conducted. Most of the results will 

be shown in 3D.  

3.    Cluster analysis - K Means 
The K-Means procedure is one of the most popular machine learning algorithms used in cluster analysis, 

due to its simplicity, interpretability and application to large amounts of data (Adams, 2018). It is most 

useful for creating a small number of clusters from many observations. Due to the large number of 

possible clusters that can be formed, the quality of the output is not guaranteed. The K means algorithm 

clusters data by separating observations into groups of equal variances, minimizing a phenomenon known 

as the inertia or within-cluster sum-of-squares as shown in the equation below (Davies & Bouldin, 1979). 
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Clustering was done using the web application Jupyter Notebook, with Python 3.6.5 installed via 

Anaconda; processor AMD Ryzen 5 3600 6-Core Processor 3.60 GHz, with 16.0GB RAM, Windows 10, 64 

bit. 

Two important factors that drove this analysis were the number of clusters to choose and the selection of 

variables to drive the clustering process. The performance of the clustering algorithm depends on the 

value of K. Therefore, we performed the well-known elbow analysis to determine the optimal number of 

clusters as well as a set of values for k. It is also important that the number of values considered should 

reflect the specific characteristics of the data sets which is the main motivation for performing data 

clustering (Pham et al., 2005).  

 

Figure 7 Determination of optimum cluster number using the elbow method. Optimum number was set at 4 

The selection of variables from the geochemical data to inform the clustering process forms part of 

inputting domain knowledge to aid clustering since our objective is to reproduce the geology based on 

the geochemistry. Six elements associated with the porphyry copper deposit (Al, Ga, Mg, Li, Sc & V) were 

used. It is important to note that the type of domains formed is a factor of the variables selected (Faraj & 

Ortiz, 2021).  Since most of the elements show significant changes with the alteration, we’re expecting 

our domains to be more consistent with the alteration than the rest of the geology.  

The following display shows a three-dimension clustered data of the selected variables with the elbow 

method optimal number of 4 as well as two other cluster number values (3 and 10).   
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Figure 8 A 3D display of clustered drill hole data showing for cluster numbers 3, 4 and 10 represented as a, b, c 

respectively and the lithology, alteration and mineralization as d, e, f respectively. 

It can be observed that all the three clustered data follow the alteration pattern better than either 

lithology or mineralization. Having established this fact, clustering with four clusters seems the better of 

the other cluster numbers in reproducing the alteration features. This validates the selection of the 

optimum number (4) by the elbow method. A cluster number of 10 was used because of its proximity to 

the total number of alteration features but it could not reproduce the alteration due to the larger volumes 

of the predominant features of the unit which overshadowed the fewer units.  

Majority of the cluster labelled ‘0’ (in blue colour) falls within alteration code 50 and 51. Clusters labelled 

1 and 2 fall in alteration code 40 and 41 while the final cluster lies in the alteration 30. The K means 

algorithm assigns a cluster to a geological feature based on the highest number of clustered elements 

found in each feature. For example, if majority of the members in a particular cluster belongs to a 

particular lithology, K means predicts the cluster as that lithology. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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4.    Validation 
To further validate the predicted clustered domains, a confusion matrix was computed. The confusion 

matrix shows the ways in which the algorithm is confused when it makes predictions, and highlights the 

errors made by the classifier. Since there are three geological categories present, this section validates 

the clustered data by these categories.  

The major lithological groups present in the data were represented by codes 31 and 50 as seen in figure 

9. K means prediction for the major groups attained an average accuracy of about 80% when compared 

to the logged lithology. The spatial distribution of the logged lithology showed that about 95% of the 

lithology with code 31 were rightly identified by the clustering algorithm. Rock code 50 which is the most 

abundant lithology was also rightly predicted. However, about 30% of lithology code 50 was misclassified 

as 30 by the algorithm as well as a few blocks of lithology code 30 was misclassified as 50. Due to the large 

number of lithologies present, misclassifications of the fewer groups are expected which leads to the 

decline in accuracy as it becomes trickier predicting delicate differences in units that are not largely 

represented or have significant similarities with the major groups. 

  

 Figure 9 Confusion matrix of K means predicted units versus logged lithology  

The logged alteration units contained five major units (40, 41, 50, 51, 52) with code 51 being the most 

abundant although the difference is not large. The algorithm predicted accurately for alteration codes 51 

and 40. However, alterations that are close to code 51 are predicted as 51 as shown in figure 10. This may 

be due to close similarities in alterations which was evident in the grades. As captured in the probability 

plot in figure 5, the algorithm identifies two distinct groups of alterations. Similarly, misclassifications can 

be due to the insignificant representation of other alterations or due to their similarities. 

The mineralogy exhibited a monopoly of predicted mineralization zones. The algorithm assigned every 

mineralogical zone to code 70. The algorithm performed poorly by not being able to predict the various 

mineralogical units present in the data. This shown in figure 11. 
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Figure 10 Confusion matrix of predicted alteration zones versus logged alteration 

 

Figure 11 Confusion matrix of predicted mineralization zones versus actual mineralization 

5. Conclusion 
The results from this study show that although very effective and is one of the most used algorithms in 

machine learning, the sole application of the classical k-means is quite handicapped in geological 

modelling, despite the spatial contiguity it exhibits. Outliers present in the data were not properly 

captured which accounts for some of the misclassification. 

According to the model, clusters delineated by the algorithm show some form of consistency with the 

logged alteration unit but forms an insignificant correlation with the rest of the categorical variables. The 

confusion matrix revealed the major flaws of the algorithm in its inability to classify units that are similar 



 
© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 58 

 

or close to each other. Even though the clustered model showed a correlation with the alteration, the 

confusion matrix exposed its weakness in the number of misclassified units. The clustering resulted in a 

mixed-up population with the major units overlapping each other. The probability plot of the alteration 

unit indicates the presence of two major populations.  

A more adequate approach is needed to account also for the geographic distribution of samples, which is 

done by some modern clustering techniques, such as the local autocorrelation-based clustering algorithm. 

The selection of variables that do not properly represent the difference in the geological units would lead 

to a poor discrimination by algorithm, reducing the accuracy of the model. 
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Abstract 
Ore grade control is an important part of a mine’s short-term planning to define which 
material is considered as ore or waste. The effectiveness of grade control is subject to 
a compendium of factors such as sampling errors, conditional bias introduced by grade 
estimators, accurate definition of dig limits, and blast-induced rock movements. In this 
scenario, misclassification of the mined material which is mainly ascribable to the lack 
of absolute knowledge about real grade distribution, is our major concern. This paper 
reviews the state-of-the-art grade control practices used for classifying ore and waste 
in open pit mining. Common approaches include the classical and distance weighting 
estimation techniques, geostatistical methods such kriging, and simulation-based 
methods. Theoretical review shows that conditional simulation is a better classifier of 
ore and waste than estimation methods due to its ability to account for grade 
uncertainties and the different optimization algorithms it provides to access economic 
consequences of ore/waste decisions. Subsequently, a novel machine learning 
approach using Elliptical Radial Basis Function Network (ERBFN) and Support Vector 
Regression (SVR) was discussed. Results from a case study show that SVR achieved an 
8%, 1.12% and 1.16% reduction in misclassified material relative to inverse distance, 
ordinary kriging, and simulation respectively. The ERBFN model also obtained a 
decrease in misclassified material of 12%, 5.4% and 5.7% compared to inverse distance, 
ordinary kriging, and simulation-based approaches, respectively. 

 

1. Introduction 
Considering the extensive nature of mining operations which involves making decisions regarding large 

volumes of materials taking place over limited period of times, blending of waste with ore and ore with 

waste is inevitable. Nevertheless, geologists and mine engineers must ensure that this situation is reduced 

to the barest minimum during excavation, and that ore and waste are differentiated. The decision of which 

material is ore or waste is very crucial for the mine’s profitability since it is the last opportunity for the 

mining company to achieve its estimated revenue, and errors at this stage are very costly and difficult to 

reverse due to its proximity to the production stage (Rossi & Deutsch, 2014). To help make better 

decisions in classifying ore and waste, and to select the destination of each parcel of material mined, 

mines perform grade control. 

Ore grade control is a compendium of procedures and practices usually involving blast hole sampling, 

grade estimation, ore/waste classification, blast-induced rock movement measurements, defining dig 

limits among others. It is done to identify which material is ore or waste and to ensure that the mill is fed 
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with the right grade of material. In this scenario, material classification based on the grade assignment is 

discussed. A volume of material is classified as ore or waste based on the grade assigned to it from grade 

prediction methods and by comparison to a cut-off grade (Abzalov, 2016). When the grade assigned to a 

material falls below a given cut-off grade, it is considered as waste and sent to the waste dump while 

material with grade above the cut-off grade is sent to the mill. However, when the assigned grades are 

not consistent with the actual grade distribution, it results in a misclassification, and materials are sent to 

the wrong destination. The figure below shows the basic issue of misclassification where a scatterplot of 

true grades for each block are plotted against the corresponding predicted grades.  

 

Figure 1: Misclassification in grade control. Source: (Rossi & Deutsch, 2014). 

Common approaches include the classical nearest neighbour method where grades of the closest 

blasthole sample are assigned directly to a block model, and the inverse distance weighting estimation 

method which assign grades by calculating the weight of each sample that is inversely proportional to the 

distance of the estimation location (Ortiz, 2020). Geostatistical methods such as kriging were introduced 

in the early 1950s. Kriging minimizes the estimation variance under certain conditions (Rossi & Deutsch, 

2014). Conditional simulation methods have been the most advocated technique in recent years to predict 

grades and their uncertainty, thus addressing some of the shortcomings of kriging and the classical 

methods. This method simulates grades at given locations and can be combined with different 

optimization algorithms where the material types (ore or waste) are evaluated against all simulated 

realizations and the optimum destination or material type at each location determined (Vasylchuk & 

Deutsch, 2018). 

In this paper (Vasylchuk & Deutsch, 2018), the authors review four grade interpolation methods: 

1. Nearest neighbour polygonal method; 
2. Inverse distance weighting method; 
3. Ordinary kriging; and  
4. Simulation-based methods.  
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The paper also discusses the performance of two novel machine learning (ML) algorithms that have been 

used recently in grade control: Elliptical Radial Basis Function Network (ERBFN) and Support Vector 

Regression (SVR). The results from these methods are analysed with the help of the case studies presented 

to show which method is most efficient for grade control.  

In the next sections, grade control methods are reviewed and critically assessed in a simple theoretical 

framework. Results obtained in the literature from numerical experiments conducted to compare the 

effectiveness of simulation versus different estimation methods, as well as results on a comparative case 

study at the Carmen de Andacollo copper mine (Chile) are presented. Summary and conclusions follow. 

2. Methods for grade prediction  
Grade prediction is probably the most crucial aspect of grade control because it forms the basis for 

selecting ore and waste zones. The main purpose of estimation is to predict the grade of the variable at 

unsampled locations in the block model which is the premise for classification. Samples taken from blast 

holes are analyzed from which a quantitative model of the ore body is constructed by interpolating and 

extrapolating between these samples to account for the grade in areas that were not sampled. This is with 

the assumption that all the sample locations and the unsampled location belong to the same domain. 

There are various methods developed for performing grade prediction in grade control, however this 

paper discusses the most common ones in the industry.  

2.1. Nearest Neighbour (NN) estimation method  
The nearest neighbor method is one of the simplest approaches to grade estimation. As a variant of the 

polygonal method, the nearest neighbor assigns the grade of the closest blast hole sample to the entire 

unsampled block (Vasylchuk, 2019). Since the weight of each sample is an important factor in estimating, 

NN method determines the weight of the samples by assigning all the weight to the closest sample and 

every other sample gets a weight of zero. In relation to the cut-off grade, the NN method regards the 

estimation location as ore if the grade of the closest sample is larger than the cut-off grade. The value at 

the unsampled location is then calculated as shown in the equation below: 

  𝑧𝑁𝑁
∗ (𝑢𝑜) = 𝜆𝑜

𝑁𝑁 + ∑ 𝜆𝑖
𝑁𝑁𝑧(𝑢𝑖)

𝑛

𝑖=1
                                                (1)                        

  𝜆𝑖
𝑁𝑁 =  {

1
0

 
        𝑖𝑓 𝑢𝑖 𝑖𝑠 𝑐𝑙𝑜𝑠𝑒𝑠𝑡 𝑡𝑜 𝑢𝑜

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}         𝑖 = 1, … , 𝑛 

𝜆0
𝑁𝑁 = 0 

where 𝑧𝑁𝑁
∗ (𝑈𝑜) is the nearest neighbor estimate at the unsampled location (𝑢𝑜), 𝜆𝑁𝑁 are the nearest 

neighbor weights of the samples, and 𝑧(𝑢𝑖) is the known grade of the samples for which 𝑖 = 1, … , 𝑛 are 

the total number of samples. 

One main strength of the nearest neighbour method is that it does not smooth estimated values 

(Kapageridis, 2014). However, study has shown that this method is not particularly accurate and cannot 

be trusted because it neither takes into account the spatial continuity of the grade nor the redundancy in 

the information (Ortiz, 2020). The discrepancies in this method are known to be larger that other 

estimators, and for many deposits that have positively skewed distributions, significant errors in the 

estimate occur in the individual blocks leading to proclivity to overestimate the average grade and 
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underestimate tonnage above cut-off (Rossi & Deutsch, 2014). Nonetheless the nearest neighbour 

method can be used as a checking tool. 

2.2. Inverse Distance Weighting (IDW) estimation method  
The inverse distance weighting technique is an enhancement of the classical polygonal method, and is 

most suitable for uniform orebodies (Abuntori et al., 2021). This method is used to estimate grade values 

using several nearby blasthole sample grades to obtain a weighted average for each block as shown in 

Figure 2. The calculation of the estimate is shown below: 

  𝑧𝐼𝐷𝑊
∗ (𝑢𝑜) = 𝜆0

𝐼𝐷𝑊 + ∑ 𝜆𝑖
𝐼𝐷𝑊𝑧(𝑢𝑖)

𝑛

𝑖=1
           𝑖 = 1, … , 𝑛                       (2)  

where 𝑧𝐼𝐷𝑊
∗ (𝑢𝑜) is the inverse distance estimate at the unsampled location (𝑢𝑜), 𝜆𝐼𝐷𝑊 is the inverse 

distance weight assigned to each known sample and 𝑧(𝑢𝑖) is the grade of each known sample for which  

𝑖 = 0, … , 𝑛 are the total number of samples. In this scenario, the weights assigned to each sample are 

inversely proportional to the distance from estimation location and are calculated as shown in equation 

3 below. Each sample is weighted based on its proximity to the location to be estimated. 

  𝜆𝑖
𝐼𝐷𝑊 =

1
(𝑐+𝑑𝑖𝑜

𝑤 )⁄

∑ 1
(𝑐+𝑑𝑖𝑜

𝑤 )⁄

𝑛

𝑖=1

                                𝑖 = 1, … , 𝑛                         (3) 

  𝜆0
𝐼𝐷𝑊 = 0 

for which 𝜆𝑖
𝐼𝐷𝑊 is the inverse distance weight of sample 𝑖, 𝑑𝑖𝑜 is the distance between the estimation 

location and sample 𝑖, 𝑤 is the inverse distance weighting power and 𝑐 is a small constant for numerical 

stability or computational reasons. When the weighting power approaches zero, the weights become 

similar and is calculated as the arithmetic average of the samples (Abzalov, 2016). On the other hand, a 

larger weighting power assigns all the weight to the closest sample making the inverse distance weight 

similar to the result of the polygonal nearest neighbour method (Ortiz, 2020). In practice, the most 

frequently used weighting power is 2, however powers of 1 and 3 are also used for estimation. Even 

though the inverse distance weighting method provides better estimates than the nearest neighbor 

method, it does not account for the details of the data configuration or the varying anisotropy at different 

scales (Vasylchuk, 2019). 

    

 

 

 

 

 

     Figure 2: Inverse Distance Weighting method. 
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2.3. Kriging-based estimation method  
Geostatistics, developed in the early 1950s, forms the basis for kriging (Krige, 1951). The geostatistical 

concept provides the platform for describing and modelling the spatial continuities of the regionalised 

variables (in this case the grade values) and allows incorporation of the continuity factors into the 

regression techniques used for the spatial predictions (Abzalov, 2016). Kriging is a collection of generalized 

linear regression techniques based on calculating optimal weights that minimize the expected error 

variance or the estimation variance (Ortiz, 2020). It produces an estimate that is a weighted linear 

combination of the data, minimizes the estimation error, hence, it called the Best Linear Unbiased 

Estimator (BLUE).  

Kriging-based grade control came to light in open pit mines during the 1980s (Deutsch et al., 2000). 

Different types of kriging algorithms have been used in grade control, but most commonly ordinary kriging 

(OK) particularly in gold mines in Northern Nevada (Rossi & Deutsch, 2014). Other types of kriging have 

also been applied such as the indicator kriging and not too popular fuzzy kriging (González, 2012). 

Although not very common, simple kriging (SK) has also been used to estimate but more often used as a 

checking tool.  

Ordinary kriging 
Ordinary kriging (OK) is a robust estimator which assumes that the local mean is unknown (unlike SK which 

assumes a known mean), but constant within the estimation neighborhood based on the quasi second 

order stationarity assumption (Ortiz, 2020). To guarantee global unbiasedness, OK constrains the sum of 

the weights to be 1.0, and as a result the mean does not need to be known (Abuntori et al., 2021). The 

weights used in kriging directly depend on the choice of a variogram model for the data set. The variogram 

model, which is a prerequisite, enables the kriging algorithm to obtain insight on the anisotropy in the 

grade distribution. The ordinary kriging estimate is summarized in the equation below. 

  𝑂𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑘𝑟𝑖𝑔𝑖𝑛𝑔 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟, 𝑍𝑂𝐾
∗ (𝑢𝑜) = ∑ 𝜆𝑖

𝑂𝐾𝑍(𝑢𝑖)              
𝑛

𝑖=1
       (4) 

where 𝑍𝑂𝐾
∗ (𝑢𝑜) is the ordinary kriging value at the unsampled location (𝑢𝑜), 𝜆𝑖

𝑂𝐾 the weight assigned to 

each known sample (𝑢𝑖), and 𝑍(𝑢𝑖) is the grade of each known sample 𝑖 for which  𝑖 = 1, … , 𝑛 are the 

total number of samples. The kriging variance which measures the quality of the estimation is given by  

  𝑂𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑘𝑟𝑖𝑔𝑖𝑛𝑔 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, 𝜎𝑂𝐾
2 (𝑢𝑜) = 𝜎0

2 − ∑ 𝜆𝑖
𝑂𝐾𝐶𝑖𝑜 − 𝜇              

𝑛

𝑖=1
   (5)  

where 𝜎𝑂𝐾
2 (𝑢𝑜) is the kriging variance at the estimation location (𝑢𝑜), 𝜎0

2 is the variance of the 

distribution, 𝜆𝑖
𝑂𝐾 is the weight assigned to the known sample 𝑖, 𝐶𝑖𝑜 is the covariance between sample 𝑖 

and the estimation location (𝑢𝑜), and 𝜇  is the Lagrange multiplier which is an additional parameter to 

help in optimality.  

There are other variants of the kriging method which have proven successful in many operations such as 

the Breakeven Indicator Method (BEI) (Vasylchuk, 2016). The BEI grade control method is a blend of both 

indicator and grade kriging. It uses an ore/waste indicator variable to predict the probability of ore 

occurrence at a given location (Rossi & Deutsch, 2014). The indicator variable is then used to define ore 

or waste probability of the estimated value based on the grade of the blast holes, and the expected 

revenue is determined. This method was used in copper-molybdenum Ujina open-pit in Chile, together 

with and the classical inverse distance weighting method and the results were compared to a reference 
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model. The BEI showed a relatively better performance than IDW and a summary of the results is shown 

in subsequent sections.   

In summary, kriging provides good frameworks for predicting grades that are locally accurate estimates, 

however, the premise of estimating based on the minimization of estimation variance is not optimal for 

grade control (Srivastava, 1987). (Rossi & Deutsch, 2014) recounts that kriging has been only slightly more 

successful at grade control compared to the other classical methods because of the inherent smoothing 

and the inability to quantify the spatial uncertainty as shown in Figure 3.  

 

Figure 3: Smoothing effect of kriging. 

2.4. Simulation-based method  
The use of simulation as a predicting tool has been a cutting-edge method in grade control. The 

commonest simulation method used to model the realistic variability of a deposit is the Sequential 

Gaussian Simulation (SGS) (Vasylchuk & Deutsch, 2018). This method assigns grade to blocks and also 

takes into account the uncertainty in the grade distribution that can be later used for assessing economic 

consequences of grade control decisions, a feature lacked by the traditional estimation methods 

(Vasylchuk, 2019). The grade assignment process involves a series of steps such as data declustering, 

normal score transformation of declustered data, simulating a value from the conditional distribution and 

back-transforming simulated values. The simulation process returns a range of probable values from a 

conditional cumulative distribution function (cdf) as shown in the equation below: 

  𝐹(𝑢; 𝑧|(𝑛)) = 𝑃𝑟𝑜𝑏{𝑍(𝑢) ≤ 𝑧|(𝑛)}                                                (6) 

where 𝐹(𝑢; 𝑧|(𝑛)) is the cumulative frequency distribution curve, 𝑍(𝑢) accounts for the uncertainty in 

the unknown true value, and (𝑛) represents local conditioning blast hole data within the specific 

neighborhood of location (𝑢). 

In order to evaluate which realization will produce the optimum classification of materials, taking into 

consideration its economic impact on the operation, simulation-based methods incorporate certain 

optimization algorithms such as minimum loss and maximum profit functions (Deutsch et al., 2000; 

Dimitrakopoulos & Godoy, 2014; Vasylchuk, 2016). Moreover, the economic consequences of sending ore 

to the waste dump is different from sending waste to the mill, hence an optimal selection criterion is 

needed to account for these asymmetric economic impacts through the optimization algorithms that 
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simulation provides. The application of the economic classification functions for grade control does not 

only account for the penalties of each decision, but also provide essential information for non-linear metal 

recoveries or any other geo-metallurgical attribute of interest by adopting the economic functions 

(Wambeke & Benndorf, 2017).  

The minimum expected loss method consists of computing the expected loss associated with each 

classification and selecting the classification for which the expected loss is minimal. Several mathematical 

expressions have been provided by different authors for the ‘minimum loss’ function, but for the purposes 

of subsequent comparison, a simplified  version of the loss function by (Vasylchuk, 2016) is presented, as 

shown in equation 7. 

𝑇ℎ𝑒 𝑙𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔(𝑢; 𝑧, 𝑧𝑐) = {

0, 𝑓𝑜𝑟 𝑎 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛

(𝑧(𝑢) − 𝑧𝑐) × 𝑏1, 𝑓𝑜𝑟 𝑎𝑛 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑤𝑎𝑠𝑡𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛          

(𝑧𝑐 − 𝑧(𝑢)) × 𝑏2, 𝑓𝑜𝑟 𝑎𝑛 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑜𝑟𝑒 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛       

     

Hence, 𝑡ℎ𝑒 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑙𝑜𝑠𝑠 𝑑𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝐸[𝑔(𝑢; 𝑍, 𝑧𝑐)]                                                                              (7) 

where 𝑔(𝑢; 𝑍, 𝑧𝑐) represents the loss function, 𝐸[𝑔(𝑢; 𝑍, 𝑧𝑐)] is the expected loss over multiple 

realizations at location (𝑢), 𝑧𝑐 is the cut-off grade, 𝑧(𝑢) is the simulated grade value at location (𝑢), 𝑏1 

and 𝑏2 are the penalty coefficients for underestimating and overestimating respectively. For instance, a 

block will be selected as ore if the expected loss for mining the block as ore is less than the expected loss 

for mining it as waste. 

Similarly, for maximum profit function, a block will be selected as ore if the expected profit for mining the 

block as ore exceeds the expected profit for mining it as waste, and vice versa. More information on 

concept of minimum expected loss or maximum profit as a basis for classification decisions can be found 

in (Rossi & Deutsch, 2014; Vasylchuk, 2016; Verly, 2005; Wambeke & Benndorf, 2017). 

2.5. Machine Learning (ML) method  
Technological advancements in recent years have enabled computers to process large amounts of 

information within the shortest possible time. Machine learning algorithms (MLA) are a collection of 

advanced statistical methods empowered by high-level computers to provide flexibility and simplicity 

when integrating and recognizing complicated patterns in data, which is a difficult task with linear 

geostatistical workflows. Machine learning is already incorporated to solve Earth Sciences problems 

(Deutsch et al., 2016) but is not fully integrated into the geometallurgical workflows that model and 

optimize the processes leading to the extraction and recovery of minerals and metals (Ortiz, 2019). As far 

as this review is concerned, the application of machine learning methods for grade assignment and 

classification in grade control is a novel enterprise with not too many applications. ML algorithms such as 

Artificial Neural Networks have been used for mineral resource estimation (Abuntori et al., 2021) but have 

not been explored in grade control. The application of ML is to enhance the accuracy of predicted grade 

values, and to make better decisions concerning the classification of mined material. 

A recent work by (Da Silva et al., 2020) demonstrated the application of ensemble ML methods for grade 

control in the Carmen de Andacollo copper mine in Chile. Two algorithms were used in their work: 

Elliptical Radial Basis Function Network (ERBFN) and Support Vector Regression (SVR). The two ML 

algorithms are trained which was preceded by the tuning of their respective hyperparameters. For 

instance, the number of nodes that constitute a hidden layer in the network was defined for ERBFN. Once 
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the nodes are defined, ERBFN algorithm trains the data and assigns a new networking system to each 

node to make grade predictions. The different predictions obtained are averaged to form a trend model 

which is further used as a secondary variable to assess the consequences of each grade control decision 

on an intrinsic collocated cokriging framework. Just as kriging, variogram models were generated and 

search parameters defined.  

In the case of SVR, the data is divided into a training, validation, and test dataset. Different reference 

models are defined from which predictions are generated for the validation set. The predicted values and 

the blasthole values are then fed into a trained meta model from these pairs of values, and then final 

grade predictions are made. Just like ERBFN, the SVR algorithm optimizes the best scenario for ore and 

waste by using the final predicted model in a collocated cokriging framework. Finally, based on a break-

even cut-off grade defined by the mine operations, the destination of each material is determined. Details 

of this work can be found in (Da Silva et al., 2020). 

3.  Results and Discussions 
The results presented here are case studies reviewed from (Da Silva et al., 2020; Rossi & Deutsch, 2014; 

Vasylchuk, 2016) which demonstrate the performance of grade prediction methods. The first scenario is 

a study in a copper-molybdenum Ujina open pit mine in Northern Chile where the outcomes of the Break-

even Indicator (BEI) method, and the inverse distance weighting (IDW) method are compared to a 

reference model in terms of their ability to classify and provide destination for materials. The results show 

that BEI is superior to IDW in that it produced results closer to the reference model. The study further 

stated that the simulation based approached used here produced results similar yet slightly better than 

the BEI. Meanwhile, Ordinary kriging (OK) produced a marginally inferior result. Only results for BEI and 

IDW are presented here with respect to the reference model for tonnages and total Cu grade for different 

destinations. Proximity of a value to 1.0 indicates better performance of the method. A factor greater 

than 1 implies overestimation with respect to the reference model. Details of this work can be found in 

(Rossi & Deutsch, 2014). 

Table 1: Performance of IDW and BEI models with respect to an SGS reference model. Source: (Rossi & Deutsch, 2014). 

Destination code Tonnage w.r.t reference TCu Grade w.r.t reference 

IDW BEI IDW BEI 

SAL 1.10 1.10 0.91 0.92 

SME 1.16 1.09 1.06 1.00 

SBA 0.18 0.45 1.15 1.01 

SMR 0.50 0.43 1.36 1.01 

SAS 0.55 0.87 1.02 0.95 

OXA 1.29 1.13 0.85 0.93 

OXB 1.16 1.98 1.08 0.98 

OXL 0.44 1.49 1.54 1.41 

MIX 0.52 0.71 0.90 0.78 

TOTAL 1.16 1.11 0.84 0.89 

      

In the second scenario, a numerical experiment was conducted to evaluate the effectiveness of simulation 

versus different estimation methods based on the losses incurred as derived from the expected loss 
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function. The penalty coefficients for underestimating and overestimating, 𝑏1 and 𝑏2 respectively are 

given as a ratio. A ratio of 1:1 means the consequences of under or overestimating are equal. If the ratio 

is asymmetric (example 1:2), it means that the penalty for overestimating is higher. Only a few ratios are 

shown here for illustrative purposes. The results show that the simulation-based method incurred the 

least losses than the other methods both on average and on individual penalty considerations.  

Table 2: Incurred losses of grade control methods. Source: (Vasylchuk & Deutsch, 2018).   

GC  

Methods 

                                               𝒃𝟏: 𝒃𝟐  

Average 2.65:1 2:1 1.3:1 1:1 1:1.3 1:2 1:2.65 

NN 1208.4 433.3 257.0 206.8 246.6 387.3 1006.0 454.0 

ID 900.6 333.3 204.2 166.4 203.9 331.8 894.2 369.3 

OK 877.7 323.7 197.6 160.6 196.4 318.5 855.1 359.8 

SK 861.9 316.5 192.4 156.0 190.3 307.2 820.9 349.8 

Simulation 338.7 215.6 186.7 155.8 186.3 249.7 355.0 224.7 

 

The last scenario involves the integration of machine learning techniques into grade control. The two ML 

algorithms used (ERBFN and SVR) were compared to other commonly used methods in the industry with 

respect to how their grade assignment led to the classification of the materials. The methods were Inverse 

distance (ID), ordinary kriging (OK), and an intelligent grade control (IGC) based on multivariate simulation. 

From the study, it was observed that ERBFN and SVR, in conjunction with the collocated cokriging 

framework outperformed traditional estimation methods and the simulation-based method. The efficient 

grade prediction process led to better classification and better prediction of material destinations. In 

Figure 4 below, a five-fold mean square error (MSER) validation is used to measure the performance of 

each model over ten blast holes considered. The red points represent the overall MSER for each method. 

From the study, it was observed that the inverse distance estimation (ID) obtained the highest MSER of 

0.00888, while that of ERBFN and SVR obtained an MSER of 0.007 and 0.0075 respectively. 

Finally, the extent of misclassification by the methods were evaluated and the study revealed that ERBFN 

with collocated cokriging (CCok) obtained the best performance in reducing misclassification. It obtained 

a reduction in misclassified material of 12% when compared to ID; 5.4% less than OK, 5.7% relative to IGC 

and 4.3% relative to CCok with SVR. Even though ERBFN-CCok obtained better results that SVR-CCok, the 

latter also obtained a reduction of 8% in misclassified material relative to ID and 1.12% and 1.16% to OK 

and IGC respectively as shown in Figure 5. 
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Figure 4: Mean squared error obtained from a 5-fold cross validation for each method applied (source: (Da Silva et 

al., 2020). 

       

  

Figure 5: Total number of misclassified blocks recorded by the grade control methods (source: (Da Silva et al., 2020). 

4. Conclusions 
Grade control methods for classifying materials have evolved. The methods reviewed in this paper have 

shown that classical estimation methods can no longer be relied on in making grade control decisions. The 

smoothing effect and other limitations of kriging methods are a huge concern for grade control and hence 

do not make it an optimal method. Simulation based methods have provided good results which still make 

them a cutting-edge tool in grade control and is still used by most mining companies today. However, 

machine learning methods may become the future of grade control due to its high performance in grade 

prediction and significantly reducing misclassification, which is the goal of grade control. 
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Sampling error and its effect on grade control profit1 
Kwame A. Ntiri (21kan4@queensu.ca)  

Julian M. Ortiz (julian.ortiz@queensu.ca) 

Abstract 
Mineral grade prediction is a critical phase in mineral exploration and resource 
estimation, and it plays a vital role in the economic evaluation of mining projects. In 
mining, grade control is the process of identifying where the mined material will end 
up. Misclassification of ore grades costs money, hence the requirement for 
representative sample methodologies in open-pit mining is becoming increasingly 
critical in all mining industries. The impact of Ordinary Kriging estimation is discussed 
in this study. Ordinary kriging is regarded as a highly dependable method and is 
commonly used for estimation. A mine's blasthole data is examined. Because errors are 
likely to occur during grade control or even actual mining operations, data analysis is 
performed by introducing errors in the data. An economic analysis is performed on the 
various errors introduced and how they will affect the mine's profit. 

 

1. Introduction 
Mining companies want to increase the returns on the investment made in the mining operation, hence 

the need to optimize grade control to minimize misclassification of ore and waste. Grade control is a 

technique that offers selectivity for the extraction of different types of ore and waste with the aim of 

increasing profit or minimizing loss in the mining operation (Verly, 2005). According to the characteristics 

of the ore, the detailed data gathered at the grade control stage is used to separate ore from waste, a 

process known as "ore-waste classification," and to determine the final destination of the various material 

types (Abzalov et al., 2010).  

The quality and quantity of the samples used determine the effectiveness of ore grade control at active 

mines. The simplest implementation of grade control consists of manually designing ore-waste boundaries 

or ore blocks on a map of blast hole grade values (Verly, 2005). In grade control, data can be viewed as a 

distribution, normally as a histogram, or as spatial continuity, where data is analyzed as a variogram. The 

main argument for using simulations is that smoothed maps obtained by kriging do not account for the 

uncertainty in the grade estimation or for the economic consequence of misclassification. As a result, 

optimum classification cannot be achieved (Verly, 2005). Geostatistical simulation methods for grade 

control have been used to solve optimization problems such as minimizing loss functions or maximizing 

the expected profits (Glacken, 1997; Deutsch, Magri and Norrena, 1999). 

This paper aims to compare the estimated grade using the Nearest Neighbor, Inverse Distance Weighted, 

Inverse Distance Weighted Squared, and Ordinary Kriging to the true grade of a dense grid, which is the 

grade produced through simulation, and discuss its effect on profit. An open pit mine in Chile will be used 

                                                           
1 Cite as: Ntiri K. A., Ortiz J. M. (2022) Sampling error and its effect on grade control profit, Predictive 
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as a case study, with the estimated grade compared to the true grade using a cutoff. GSLIB software will 

be used for generating variograms and simulating the blasthole data. 

2. Literature review  
Grade control procedures depend on both the quality and quantity of samples. Just improving the sample 

quality does not always lead to better defined ore and waste blocks if the spacing chosen is too broad. 

The primary goal of grade control in mines is to distinguish between material that is above cut-off grade 

and material that is below cut-off grade by estimating recoverable reserves. Because drilling does not 

cover the entire area to be mined, recoverable resource estimation attempts to predict the quality (grade) 

and quantity (tonnage) from a limited number of data points (Gulule, E. P., 2016). 

According to an estimation of economic losses due to poor blast hole sampling in open pits, errors in 

sampling and preparation as well as estimation methodology are to blame for losses of the order of 

millions of dollars annually. The estimation methodology is responsible for larger losses than those related 

to sampling errors. The use of the polygonal method instead of kriging generates invisible profit losses. 

Kriging is less sensitive to the level of sampling error than the polygonal method. Other techniques, such 

as geostatistical simulations, could be evaluated to improve the SMU classification. The total profits can 

be significantly impacted by improvements like the adoption of geostatistical estimation methods, better 

equipment for sampling and sample preparation, and staff training (Magri & Ortiz, 2000). Geostatistical 

simulation allows for the quantification of losses generated by poor blast hole sampling and imperfect 

estimation.  

Inverse Distance Weighting methods assume that samples taken close together will have more 

characteristics in common than samples taken farther apart, with anisotropies not frequently considered 

when using the same corner point grade and thickness for multiple orebodies. Kriging is superior to the 

IDW method because it considers not only distance but also spatial variability, as well as sample 

redundancy and proximity. Outlier values in geostatistics can result in distorted variograms due to the 

high nugget effect. The main aim of cutting the high-grade values is to alter the samples' distribution. 

Kriging uses a set of simultaneous linear equations for each point on the output grid such that all the 

actual input data is optimally weighted according to distance using the semi variogram. Kriging is the 

geostatistical estimation method developed to provide the optimal linear and unbiased estimates. It 

depends on expressing spatial variation of the property in terms of the variogram (or correlogram), and it 

minimizes the prediction errors, which are then estimated. The technique is based on the assumption that 

the variable to be estimated is a regionalized variable. The technique is used if the underlying conditions 

of second-order stationarity are met, which means that the sample data's mean and variance stay 

unchanged in space at a minimum. Ordinary kriging is the most widely used kriging method. It serves to 

estimate a value at a point of a region for which a variogram is known, using data in the neighborhood of 

the estimation location. Ordinary kriging can also be used to estimate a block value (Wackernagel H., 

1995). 
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3. Case study  

3.1. Background 
The case study's data came from a copper mine in Chile, South America. This dataset contains 28,634 

blasthole data points collected from a 15 m bench height open pit. The copper grade reported has a mean, 

standard deviation, and coefficient of variation of 0.841, 0.330, and 0.392, as shown in the histogram in 

Figure 1. 

Sorting the data by elevation resulted in the selection of a bench. The bench data chosen ranged between 

270 and 285 meters. On the chosen bench, 1855 blasthole data were discovered. According to the 

histogram in Figure 2, the mean, standard deviation, and coefficient of variation of the copper grade 

reported are 0.815, 0.203, and 0.249, respectively. Figure 3 shows the location of the blast hole as well. 

The following GSLIB functions will be used to simulate blasthole data: nscore, vmodel, sgsim, and blkavg. 

Histplt and pixelplt, on the other hand, will be used to visualize the output files. 

The normal score values for the numerous blast holes are calculated. The normal score feature alters the 

dataset to closely resemble a standard normal distribution. This is performed by comparing the ranks 

provided by a normal distribution to the ranks acquired by ordering the values in the dataset from lowest 

to highest. When the word "normal score" is used, it is typically expected that the result can be compared 

to a table of standard normal probability. Figure 4 depicts the normal score values. A typical 8-directional 

variogram with 40 lags, 10m lag separation distance, and 5m lag tolerance is generated from the normal 

score output file, as shown in Figure 5. 

 

Figure 1: Histogram of the grade of all the blast hole data obtained from the mine. 
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Figure 2: histogram of the grade of the selected blast hole data. 

 

Figure 3: map of blast hole samples for Cu grade. 

 

 

 

Figure 4: Histogram showing the normal score of the selected data. 
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Figure 5: normal score directional variograms. 

The second and sixth azimuth directions of 22.5 and 112.5 fall in the outer section of the normal score 

semi variogram shown in Figure 5. A variogram model is then created for the two dimensional variogram. 

Figure 6 depicts this. 

The selected blasthole data is then utilized to produce a simulated model using sequential Gaussian 

simulation with the corresponding variogram model. SGSIM, a stochastic method, was developed to avoid 

the smoothing effect caused by deterministic methods by generating a number of stochastic realizations. 

Actual data from sampled sites and values from previously simulated locations are used in the sequential 

procedure to inform each unknown location. Furthermore, because distinct random paths are constructed 

that can pass through the unsampled sites in different orders, SGSIM can generate a number of equally 

plausible outcomes to investigate and evaluate the uncertainty (Verly, 1993). The simulation was 

implemented with a maximum search radius of 50m in all directions. A single simulation with a minimum 

and maximum original data of 8 and 12, respectively, is used as a representation of the ground truth 

distribution of grades at point support. Figure 7 depicts this simulated scenario. 

 

Figure 6: Normal Score variogram model. 
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Figure 7: Simulated point Cu grades. 

The ground truth at point support is used to generate the block ground truth, by averaging the simulated 

points inside each 10 x 10m block. The Ground Truth Cut block grades are shown in Figure 8. 

 

Figure 8: Simulated block Cu grades. 

 

3.2. Addition of errors and block estimation  
Ordinary Kriging is preferred in block estimation because, despite the assumption that the mean is 

unknown, it assumes stationarity on the neighborhood of the estimate point. Estimation is performed 

over 10 x 10m blocks and using a 4 x 4 block discretization, with minimum and maximum data for kriging 

of 4 and 16, respectively. Ordinary kriging is conducted using the previously developed variogram model. 

Figure 9 depicts the estimated block after using Ordinary Kriging. 

Errors are introduced in the copper grade recorded in the blasthole data. These errors are used to assess 

the effect of precision of the data as well as the consequences of having biased data. A random error is 

added to the blasthole data to evaluate precision when 10%, 20%, 30%, and 50% errors are introduced. 

For the bias scenarios, copper grades of 110%, 90%, 130%, 70%, 150%, and 50% of the true blasthole 

sample value are calculated.  

Ordinary kriging is then used to estimate the block grades. Negative grades that appear during the 

estimation are made zero. The estimated block models resulting from using samples with precision errors 
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are shown in Figure 10, while those resulting from using samples with bias are seen in Figure 11, showing 

the different scenarios. A statistical summary of the various errors is shown in Table 1 and Table 2. 

 

Figure 9: Ordinary kriging estimation of Cu grades at block support. 

 

    

    

Figure 10: Block estimates based on samples with added precision errors of 10% (top left), 20% (top right), 30% (bottom left) and 
50% (bottom right). 
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Figure 11: Block estimates based on samples with added bias of +10%, +30% and +50% (left column), and -10%, -30% and -50% 
(right column). 
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Table 1: statistical summary of ground truth point and block simulated values, and original blasthole samples and samples with 
added error for different precisions. 

Parameters 
SIM 

point 
SIM 

block 
BH  

data 
Prec. 
10% 

Prec. 
20% 

Prec. 
30% 

Prec. 
50% 

number of data 49005 2037 1855 1855 1855 1855 1855 

mean 0.820 0.820 0.815 0.817 0.820 0.811 0.795 

standard deviation 0.188 0.165 0.203 0.220 0.265 0.323 0.454 

coefficient of variation 0.229 0.202 0.249 0.269 0.323 0.399 0.560 

maximum 2.350 1.711 2.350 2.207 2.282 3.260 2.851 

upper quartile 0.910 0.904 0.910 0.924 0.962 0.988 1.066 

median 0.790 0.797 0.780 0.782 0.787 0.775 0.760 

lower quartile 0.700 0.714 0.690 0.675 0.640 0.594 0.477 

minimum 0.181 0.329 0.300 0.281 0.219 0.000 0.000 

 

Table 2: statistical summary of blasthole samples with bias. 

Parameters 
SIM 

point 
SIM 

block 
Bias 

+10% 
Bias  
-10% 

Bias 
+30% 

Bias  
-30% 

Bias 
+50% 

Bias  
-50% 

number of data 49005 2037 1855 1855 1855 1855 1855 1855 

mean 0.820 0.820 0.897 0.734 1.060 0.571 1.223 0.408 

standard deviation 0.188 0.165 0.223 0.182 0.263 0.142 0.304 0.101 

coefficient of variation 0.229 0.202 0.249 0.249 0.249 0.249 0.249 0.249 

maximum 2.350 1.711 2.585 2.115 3.055 1.645 3.525 1.175 

upper quartile 0.910 0.904 1.001 0.819 1.183 0.637 1.365 0.455 

median 0.790 0.797 0.858 0.702 1.014 0.546 1.170 0.390 

lower quartile 0.700 0.714 0.759 0.621 0.897 0.483 1.035 0.345 

minimum 0.181 0.329 0.330 0.270 0.390 0.210 0.450 0.150 

 

3.3. Cutoff grade application  
In analyzing the effect of the errors introduced, a cutoff is applied. To avoid issues related to mine and 

processing capacity, the cutoff selected is close to the breakeven cutoff grade, in this case 0.554% Cu. The 

ore blocks estimated grades are used to decide to send the block to the processing plant, while the actual 

grade (the one from the block support simulated ground truth) is used to assess its value. Since block 

grade estimates are based on samples and these can have sampling errors related to precision or bias, the 

ore/waste classification will be imperfect, which has an impact on the overall economic value.   

In calculating the tonnage of the blocks a bulk density of 2.7 t/m3 is assumed. The height of block is 15 m 

with the block area of 10m x 10m. The metal content for all the scenarios is derived from the multiplication 

of the grade and tonnage of the block and a recovery of 90% is assumed.  

3.4. Economic evaluation of the blocks 
This computation determines the profit or loss of each block and bench under discussion, taking into 

account the costs to be incurred and compensations to be made for the cutoff grade used. 



 
© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 80 

The blocks with an average grade higher than the cutoff grade are termed ore, which is computed by 

deducting the cost of processing from the value of the block in terms of its grade. Waste blocks give no 

economic advantage. These results are added together to determine how much profit or loss will be 

earned in the sequence of scenarios mentioned to check for precisions and biases. Notice that both ore 

and waste blocks need to be removed from the bench, so the mining cost is not considered in these 

calculations. 

The values of all parameters used are based on assumptions about a real-world scenario. The parameters 

used in the evaluation are shown in Table 3. The grade assigned to each estimated and error-added block 

is based on the simulated grade, since this constitutes the true grade of the block and determines the 

profit or loss actually incurred by the operation. The decision about where to send the block, on the other 

hand, is made on the estimated grade, which may have been obtained from samples with error. If the 

estimated grade of the block is greater than the cutoff grade, the block becomes an ore block, with its 

economic evaluation based on the simulated grade of the block. However, if the grade of block estimated 

is less than the cutoff grade, the block becomes a waste block, for which the economic evaluation is the 

cost of mining the entire block. Each block was estimated to be 10m x 10m x 15m in size. A bulk density 

of 2.7 was used in determining the tonnage of the block, which is denoted by the block volume multiplied 

by the bulk density. The outcome of the evaluation is shown in Table 4 and Table 5 for the precision errors 

and biases. A graphical representation of the outcome of the evaluation is shown in Figure 12 and Figure 

13. 

Table 3: economic parameters used in the profit calculations. 

Parameters Value Units 

Price 3.3 USD/lb 

Recovery 90 % 

Processing cost 22 USD/t 

Ton 10x10x15 Ton/block 

Metallurgical cost 1.3 USD/lb 

 

Table 4: ore blocks, their grade, tonnage, metal and profit, along with their relative error with respect to the ground truth, for 
different scenarios of blasthole samples precision errors. 

Cutoff 0.554%Cu 
Parameter 

SIM 
block 

BH 
Prec. 
10% 

Prec. 
20% 

Prec. 
30% 

Prec. 
50% 

Ore Blocks 1526 1538 1531 1520 1448 1297 

Average grade 0.83 0.83 0.83 0.83 0.84 0.84 

Tonnage (kT) 6180 6229 6201 6156 5864 5253 

Metal (M lb Cu) 113 114 114 113 108 98 

Profit (M$) 68.0 68.0 67.9 67.6 66.0 60.1 

Grade error (%) 0.0 -0.3 -0.2 -0.1 0.8 1.3 

Tonnage error (%) 0.0 0.8 0.3 -0.4 -5.1 -15.0 

Metal error (%) 0.0 0.5 0.2 -0.5 -4.4 -13.9 

Profit error (%) 0.0 -0.1 -0.2 -0.6 -3.0 -11.6 
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Table 5: ore blocks, their grade, tonnage, metal and profit, along with their relative error with respect to the ground truth, for 
different scenarios of blasthole samples bias errors. 

 

 

 

Figure 12: relative errors in grade, tonnage, metal and profit for the case of blasthole samples with precision errors. 

 

Cutoff 0.554%Cu 
Parameter 

SIM 
block 

BH 
Bias 

+10% 
Bias  
-10% 

Bias 
+30% 

Bias  
-30% 

Bias 
+50% 

Bias  
-50% 

Ore Blocks 1526 1538 1548 1488 1562 811 1576 1526 

Average grade 0.83 0.83 0.83 0.84 0.82 0.94 0.82 1.20 

Tonnage (kT) 6180 6229 6269 6026 6326 3285 6383 421 

Metal (M lb Cu) 113 114 114 111 115 68 115 11 

Profit (M$) 68.0 68.0 67.9 67.8 67.7 50.1 67.4 10.8 

Grade error (%) 0.0 -0.3 -0.5 0.7 -0.9 12.9 -1.4 44.2 

Tonnage error (%) 0.0 0.8 1.4 -2.5 2.4 -46.9 3.3 -93.2 

Metal error (%) 0.0 0.5 0.9 -1.8 1.4 -40.0 1.8 -90.2 

Profit error (%) 0.0 -0.1 -0.2 -0.4 -0.5 -26.3 -1.0 -84.2 



 
© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 82 

 

Figure 13: relative errors in grade, tonnage, metal and profit for the case of blasthole samples with bias errors. 

 

3.5. Results discussion  
The results demonstrate that the use of samples with errors lead to a short term block model that 

misclassifies the correct destination of ore and waste blocks. This translates into a loss of profit.  

The use of unbiased and precise samples at blastholes, along with an unbiased and optimum estimation 

technique such as ordinary kriging, generates a model that is very close to the perfect classification of 

blocks, which in practice is unachievable, since we do not have access to the true block grades. In this 

work, that “reality” is based on one simulated model, developed at point support and then block averaged 

to represent the true grade of blocks. The points simulated are conditioned to the actual blasthole dataset 

of the mine. The classification using the blasthole samples without any added error, generates relative 

errors in the ore grade, tonnage, metal content and profit lower than 1%. Profit is only 0.1% lower than 

the unachievable case of perfect knowledge. This is encouraging and should suggest to practitioners that 

ordinary kriging must be used in short term planning and during grade control to determine the block 

grades prior to their assignment as ore or waste. 

When samples suffer from precision errors, their values are overall unbiased, but at any location they can 

be slightly higher or lower than the actual value. Depending on the level of noise, the estimation of the 

block grades will be affected proportionally, and this means more blocks are incorrectly estimated above 

or below the cutoff. Blasthole sampling is known to be of poor quality in many mining operations. 

However, quality control and quality assurance procedures ensure that it will rarely exceed 15 to 20% of 

relative error (this is the error relative to the mean value of the sample grades). It can be seen that when 
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the error in precision is 10 or 20% in the blasthole samples, the estimated blocks will be misclassified more 

often. However, the relative errors in grade, tonnage, metal content and profit are still below 1% with 

respect to the case of perfect knowledge. Profits decrease in 0.2 and 0.6% for 10% and 20% precision 

errors. However, when the samples precision is lower, with errors of 30 and 50%, the impacts on profit 

explode quickly. Profit falls by 3.0 and 11.6% for these two cases, which represents a loss of $2 million 

and $8 million, respectively. This is a loss over just over 6 million tons of ore. In a large open pit, this could 

represent a month of production, that is, $2 million or $8 million per month. 

When samples are biased, losses can be very significant, depending on the cutoff and the direction of the 

bias. A positive bias will send more material to the mill, which in the end may not generate too much of a 

loss, if the “waste” is not too low in its true grade. On the other hand, if the bias is negative, many blocks 

of ore will be sent to the waste dump, since their grade was predicted with a systematically lower value. 

The few blocks that are correctly assigned to the processing plant will not generate enough metal to 

compensate for the lost ore. We see significant profit losses for biases of -30% and -50%. Losses in other 

cases are minor, although they are always there. 

4. Conclusions 
The study shows that ordinary kriging is a great tool for forecasting the true block grades and the profit 

losses due to the lack of perfect knowledge of the true grades is very small. When samples are affected 

by sampling errors, the effects can be tremendous in profit. Precision issues may lead to million dollars 

losses over a year’s production. Furthermore, when samples are biased, this may lead to a loss of ore, 

which will be misclassified and sent to the waste dump. Comparison with other estimation methods would 

provide insight with respect to their unbiasedness, optimality and robustness. Also, accounting for mining 

and processing capacity constraints would change the results. These possibilities could be explored in 

future work.  
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Review of blast movement measurements for grade control1 
Noble E. Potakey (n.potakey@queensu.ca) 

Julian M. Ortiz (julian.ortiz@queensu.ca) 

Abstract 
Blasting is carried out in mining operations to break down rocks and to maximize 
material movement. In open pit mines, this invariably involves huge amount of 
explosive energy which causes rock materials to be displaced from their original 
position. This movement is detrimental to the accurate delineation of the predefined 
ore and waste zones and could lead to ore loss and dilution if not accounted for. Direct 
measurements such as the use of visual markers have been widely patronized in most 
campaigns. Sandbags retrieved after blasting show that pre-blast grades could be 
displaced up to 10-15 meters after blasting. Blast movement monitors (BMM) 
developed by a group of researchers from the University of Queensland currently 
provide the most accurate method of blast-induced rock movement despite the cost of 
data acquisition. In recent years, indirect determination of blast movement has been 
advocated using software and complicated simulation algorithms. In this paper, the 
limitations of direct blast movement techniques as well as the feasibility of indirect 
measurement models are discussed. Considering that there is no easy-way and cheap 
method to determine post-blast ore boundary, a machine-learning (ML) approach and 
a corresponding evaluation system have also been proposed in the literature.  

 

1. Introduction 
After tremendous work has been done to define and model the distribution of minerals in a rock mass, 

the rock undergoes a comminution process before the mineral is extracted. For most scenarios, the first 

stage of the comminution process is blasting, and this allows efficient excavation and haulage after the 

rock has been fragmented. Blasting is done using explosives inserted into holes drilled in the rock. Upon 

detonation, the chemical energy in the explosive is released, and the solid explosive becomes transformed 

into a pressurized gleaming gas that shatters and move rocks in the path of least resistance resulting in a 

muck pile (Hustrulid, 2011). Lawrence (1944), Thornton (2009) and Zhang (2016) provide more 

information on the detonation theory and the mechanics of rocks breakage. 

Considerable amount of research has been done on blast optimization, but this has often been in the area 

of ground vibration, rock damage, fragmentation, blast design, strain energy, and in regard to 

environmental safety (Blair & Minchinton, 1997; Persson, 1997; Sołtys et al., 2017; Zou, 2017). The impact 

of blast-induced rock movement on predetermined grade distribution of the rock has not been extensively 

explored and leaves much to be desired (Thornton, 2009). Grade control is a compendium of procedures 

and practices aimed at sending the mined material to the right destination and that involves considering 

the post blast movement of rocks. Disregarding this situation will lead to misclassification, that is, 

                                                           
1 Cite as: Potakey N. E., Ortiz J. M. (2022) Review of blast movement measurements for grade control, Predictive 
Geometallurgy and Geostatistics Lab, Queen’s University, Annual Report 2022, paper 2022-06, 85-95. 
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mistaking ore for waste or waste for ore; a mixing of low grade and high grade materials; sulfides to oxides 

identification issues; or other contaminants – collectively referred to as ore loss and dilution (Rosa & 

Thornton, 2011). Figure 1 is an illustration of how ore loss and dilution occur due to ore block movement. 

   

          Figure 1 Ore loss and dilution during blast. Source: (Thornton et al., 2005) 

To account for this movement, various methods have been used to measure or model the pre and post 

blast rock locations. Two main approaches used to measure or model blast movement are the direct 

measurements based on the use of physical markers, and indirect measurements such as numerical 

modelling. Direct measurement method involves the use of objects inserted into the pre blast rock and 

their post blast location are retrieved after excavation and measured (Rosa & Thornton, 2011). The use of 

simple visual markers such as sandbags and poly-pipes have been employed in several open pit mines to 

track rock movement because it is simple and inexpensive. However, its limitations include a low turnout 

of recovered markers and its inability to provide a three dimensional movement pattern (Thornton, 2009). 

Another direct method used in blast movement measurement is the application of remote sensing devices 

(Vasylchuk, 2019). Developed by a group of researchers from the University of Queensland, Australia, the 

electronic blast movement monitor (BMM) quickly became a grade control to measure rock movement. 

The BMM device relies on transmitters that are installed in the blast prior to blasting, which are recovered 

after the blast by a special detector and the data is processed with a software.  

Modelling the entire blasting process as an alternative for direct measurements have received a mixture 

of feedback even though it is a good prospect to monitoring blast movement. Lack of complete knowledge 

about the geological domain, location of rock breakage and mechanical properties of the rock, together 

with uncertainty in blast parameters undermines the accuracy of the model (Vasylchuk & Deutsch, 2019).  

Considering that the BMM method is expensive, and most companies cannot afford it, calibrating a 

numerical model that could measure rock movement is worthy of research (Vasylchuk & Deutsch, 2018).  

In the next sections of this paper, we review the blast movement methods in operation in most mines 

according to case study, highlighting their limitations and the feasibility of indirect measurement 

approaches. Subsequently, a novel machine learning approach is discussed as an indirect method 

considering that there is no easy-way and cheap method to determine post-blast ore boundary.  
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2. Blast Movement Measurement  
Understanding material movement during a blast has always been an intriguing area to mine operators 

especially where there is no clear visual distinction between ore and waste. Various methods used have 

demonstrated a mixture of success and some limitations. Traditional methods of understanding the 

movement of the rock was to compare and contrast pre and post blast topographic surfaces (Vasylchuk 

& Deutsch, 2018). In context, blast movement measurement has been categorized into i) direct 

measurements and ii) indirect measurements. 

2.1 Direct Measurement of Blast-induced Rock Movement 
This type of measurement involves the use of physical markers to track material movement. Two major 

direct approaches have been used: i) the use of visual markers, and ii) using remote sensing devices.  

2.1.1 Visual Markers 
The use of visual markers encompasses objects such as sandbags, chains or pipes inserted into the rock 

before blasting and their post blast location identified and measured (Rosa & Thornton, 2011). In their 

research, Taylor (1995) and Zhang (1994) appraised the use of sandbags and wooden stakes as markers 

for rock displacement during blasting. Results indicate that even though these visual markers are simple, 

cheaper, and relatively accurate, only about forty percent (40%) of the markers were recovered and it 

took several days for all the bags to be found. A more common industrial approach is the use of plastic 

pipes inserted into additional holes drilled within the blast area. And as the pipes are exposed during 

excavation, their locations are surveyed. For bench-by-bench excavation, the process is repeated for each 

level. Figure 2 shows an example of a recovered pipe after blasting. 

However, the disadvantage of this method is that the data for processing is not available until the markers 

are found and the ore has been excavated (Fitzgerald et al., 2011). This does not allow the proper design 

and adjustment of dig polygons prior to excavation. The use of the poly pipes also presents several 

limitations including the generation of only two-dimensional vector measurements, poor recovery of 

pipes for lower-level benches and it being labor-intensive. It must however be noted that the use of 

markers is an ad-hoc approach, and not many of such are published in literature. 

 

      

Polypipe exposed 

after excavation. 
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  Figure 2 Pipe recovered after blasting. Source: (Rosa & Thornton, 2011) 

 2.1.2 Remote Sensing Devices 
A modern approach to directly measure blast movement is the remote detecting equipment. This is an 

electronic method that aims at alleviating some of the limitations of the visual methods such as reducing 

the arduity. In remote sensing methods, metallic or magnetic targets are used instead of marker bags or 

pipes, and their post blast locations identified using remote sensing or electronic devices. Various 

methods have been tested including Ground Penetrating Radar, Magnetometry, Metal detection and 

recently, the Radio frequency (RFID) tags (Thornton, 2009). However, most suffer limitations such as 

damage of targets by excavators, use of only one target in each hole and targets must be placed close to 

the surface or on the surface, which is detrimental to accurately measure movement dynamics.  

By far, a remote sensing approach that has proven very effective and is almost the most accurate method 

of blast-induced rock movement monitoring is the blast movement monitoring (BMM) device. This 

method is used in mines such as the Husab Uranium mining project in Namibia, the second largest world 

producer of uranium (Yu, Shi, Zhou, Rao, et al., 2019). Developed by a team of researchers from the 

University of Queensland and later commercialized under the Blast Movement Technologies (BMT), the 

BMM system comprises of transmitters that are installed in separate holes drilled between blastholes and 

are held in place by drill cuttings or stemming (Fitzgerald et al., 2011). After the blast, the transmitters are 

located with a special detector and the data is processed with a purpose-designed software. The structure 

of a modern BMM device is shown in figure 3.  

 

Figure 3 The blast movement monitoring system. Source: (Yu, Shi, Zhou, Rao, et al., 2019). 

The BMM ball can be detected to a depth of around 25 m after blasting. Once the horizontal location of 

the ball is pinpointed, the signal is recorded to determine the depth below the surface, and then the three-

dimensional (3D) movement vectors is calculated. The 3D movement vectors obtained is then applied to 

the ore block boundaries determination by the system software with results usually ready within an hour 

or two after the blast (Adam & Thornton, 2004). With a battery life of 12 hours and more, and excellent 

detection rates of about ninety per cent (90%), the BMM system has proven to be very effective and 

practical for grade control.  

(a) BMM ball: contains transmitters 

that emit electromagnetic signals 

which is detected by the BMM 

detector. 

(b) BMM activator: activates the 

BMM ball prior to the blast.   

(c) BMM detector: locates the BMM 

ball after the blast. 

(d) BMM explorer: computer 

software that does the post blast 

ore boundary calculations. 
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2.2 Indirect Measurement of Blast-induced Rock Movement 
Indirect blast movement measurement methods became necessary to complement the direct 

measurement method in saving time and money. Visual markers are labor intensive and BMMs are not 

cheap. So an indirect measurement is suggested which involves the use of algorithms and software to 

infer the movement of rocks based on data and other field parameters collected (Vasylchuk & Deutsch, 

2018). In most cases, the post blast topographic surface is traced and compared to the pre-blast 

topography and an approximate blast movement model is developed. In this section, we will look at 

numerical simulated models and machine learning (ML) models. 

2.2.1 Numerical modeling of blast movement 
Early attempts to numerically model blast movement was hindered by computational capability. Early 

blast movement models developed included the Universal Distinct Element Code (UDEC) by Cundall 

(1980) which attempts to model by simulating behavior of jointed rock masses subjected to high and 

transient loadings; the Block and Bump model by Schamaun (1986) where blast movement is represented 

by blocks and circles and where the dynamic movement of rock particles is controlled by parameters such 

as the geological characteristics of mine benches, shapes and sizes of the particles, and cohesive forces 

between rock particles. The advanced Distinct Motion Code (DMC) model presented by Preece et al. 

(1997) allowed the incorporation of the properties of explosives for modeling the motion of rocks.  

Having mentioned that, in recent years, simple and efficient models have been developed such as the 

simple blast movement model by Furtney et al. This model illustrates among other things, how the 

chemical energy of the explosive is distributed during blasting and how it impacts the displacement of 

rocks. The model seems able to predict the face velocities using generic rock properties as inputs within 

a certain degree of accuracy. Detail of this work can be found in Furtney et al. (2013). In 2018, Vasylchuk 

and Deutsch described a blast movement model using pre and post blast topographic features. In the 

model, the algorithm proposed translated the the pre-blast grid locations to post-blast locations, and a 

3D model of the post blast muck pile was created. Post-blast locations were inferred from discretized pre-

blast locations. Figure 4 shows the pre and post blast models generated by their algorithm.  

 

 

Figure 4 Pre (left) and post (right)  blast 3D models with assigned grades Source: (Vasylchuk & Deutsch, 2018) 

Vasylchuk and Deutsch (2019) advanced their research by developing an empirical optimization algorithm 

that incorporates the use of direct measurements to topographic monitoring. Results from a fabricated 

scenario demonstrated the model’s ability to map pre-blast grade onto post-blast muck pile within a 

reasonable time and still honored real information about blast movement. Figure 5 shows the grade 

distributions prior to and after blasting by the model and their ultimate destinations. 
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Despite the interesting approach of numerically modelling blast movement, it also draws legitimate 

concerns. Some of which are the uncertainties in the blast parameters, lack of absolute knowledge of the 

geological features, fracture locations and mechanical properties of the rock (Vasylchuk & Deutsch, 2019). 

According to Yu et al. (2019), theoretical calculations and numerical simulations do not provide accurate 

blast-induced rock movement measurements. The discrepancy between a modelled and a measured blast 

movement was tested by Rosa and Thornton (2011) and the error margin was from 1 to 7 meters which 

is estimated to be equivalent to a loss of about 2.2 to 4.8 million dollars. They further suggested that blast 

models should be validated with actual pre and post blast bench configurations. 

   

        Figure 5 Pre (a) and post (b)  blast classification of materials Source: (Vasylchuk & Deutsch, 2019). 

2.2.2 Machine Learning (ML) approach 
The advancement of computers and technology has aided the processing and manipulation of high 

volumes of data within the shortest possible time. Machine learning algorithms (MLA) are a collection of 

advanced statistical tools to provide a faster and better way of processing data using high-level processors. 

The application MLA has received a lot of successes such as the application of Artificial Neural Networks 

for grade estimation in mineral resource estimation (Abuntori et al., 2021). New methods such as deep 

networks performed excellently in its predictive ability with both structured and unstructured data (Shen 

et al., 2018). Random Forest have also been successively explored to perform classification of geological 

domains based on sample geochemical information (Cevik et al., 2019). However, not many applications 

of ML have been employed in measuring blast movement. The ML algorithms being discussed in the 

following paragraphs are novel and sets the tone for further research.  

In the first scenario, three new hybrid models of Support Vector Machines (SVR); a genetic algorithm (GA), 

an artificial bee colony algorithm (ABC), a cuckoo search algorithm (CS), abbreviated as the GA-SVR, ABC-

SVR and CS-SVR respectively, were proposed for the prediction of rock movement in the Husab Uranium 

Mine in Namibia, the Coeur Rochester Mine, USA and the Phoenix Mine, USA. Eight blasting parameters 

were used as input variables to develop the model: rock type, number of free faces, first centerline 

distance, hole diameter, power factor, spacing, subdrill and initial depth of monitoring, and horizontal 

blast-induced rock movement was the output variable. The use of the hybrid algorithms aided in finding 

optimal hyperparameters for the final model: i.e gamma () and the penalty factor (C). The best 

performing model was selected by examining the three models. Data collected for all algorithms were 

divided into training and testing for validation and comparison. The GA-SVR model was designed by 
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simulating the biological process of evolution where the adaptive abilities of organisms were employed 

to generate a group of well adapted individuals after continued evolution. The behavior of scout 

honeybees in finding food sources close to the hive, inspired the development of ABC-SVR model. Finally, 

the CS-SVR was inspired by how the cuckoo bird searches, lays and hatches its eggs in the nest of another 

bird considered as the host bird. During calculation, a Levy flight method is used in the search for new 

nests in the CS algorithm. Figure 6 shows the framework of the proposed models. Details of this work can 

be found in (Yu, Shi, Zhou, Rao, et al., 2019). 

 

 

 Figure 6 Model framework of  GA-SVR, ABC-SVR and CS-SVR Source: (Yu, Shi, Zhou, Rao, et al., 2019) 

In the second case, three original machine learning techniques: support vector regression (SVR), the 

Gaussian process (GP), and the extreme learning machine (ELM) were used to develop a predictive model 

for blast movement. The genetic algorithm (GA) and a whale optimization algorithm (WOA) was used in 

place of the trial-and-error method, to obtain the optimal hyperparameter search. The ELM, based on 

neural network theory, was used for its fast-learning ability and good generative performance. The only 

hyperparameter tuned was the number of neurons. Having extended support vector machine (SVM) from 

just solving classification but to also solve regression problems, SVR was used. Hyperparameters were  

and C as mentioned in section above. GP is a nonparametric model based on random parameters in a 

gaussian distribution. The mean and covariance functions make up the hyperparameter. The 

metaheuristic algorithms used were also inspired by natural phenomena just as the previous case.  The 

GA algorithm used is like the one described in the above scenario, and WOA algorithm is designed from 

the predating nature of whales in the ocean.  Like the other swarm-based algorithms, mathematical 

models inspired by these phenomena are utilized to reduce the error between the predicted values and 

real values, and the process is terminated when the set error level is reached. Details of this work can be 

found in (Yu, Shi, Zhou, Gou, et al., 2021). 
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4.    Discussion 
The results presented here are case studies from machine learning approaches as proposed by (Yu, Shi, 

Zhou, Rao, et al., 2019) and (Yu, Shi, Zhou, Gou, et al., 2021). According to literature, BMM methods, even 

though very costly, provide far better measurement results than the use of visual markers and numerical 

simulation. However, there is no performance metric in literature that compares their performances with 

real time or synthetic data.  

For the first case study involving GA-SVR, ABC-SVR and CS-SVR, their results together with an artificial 

neural network (ANN) model were evaluated using correlation coefficient (R²), mean square error (MSE), 

variance account for (VAF) and the computing time. Based on the results from these performance metrics, 

a ranking method was used to the model performance and results are summarized in table 1. From the 

results, GA-SVR was found to be the best predictive blast movement model and has a faster computing 

speed. 

 Table 1 Performance of models Source:  (Yu, Shi, Zhou, Rao, et al., 2019)  

Method Model Results Rank value Total 
rank R² MSE VAF Run 

time 
(s) 

R² MSE VAF Run 
time 
(s) 

GA-SVR Training 0.9489 0.0025 94.858 40.56 2 3 2 3 22 

Testing 0.9245 0.0031 91.405  4 4 4  

ABC-SVR Training 0.9494 0.0024 94.903 48.67 3 2 3 2 20 

Testing 0.9240 0.0031 91.366  3 4 3  

CS-SVR Training 0.9497 0.0024 94.936 97.28 4 2 4 1 19 

Testing 0.9233 0.0031 91.2842  2 4 2  

ANN Training 0.8835 0.0237 88.167 2.36 1 4 1 4 15 

Testing 0.9002 0.0172 87.666  1 3 1  

 

Similarly, in the second case study, the three original ML methods (SVR, GP and ELM), together with two 

hybrid models each of their kind (GA-SVR, WOA-SVR, GA-GP, WOA-GP, GA-ELM, and WOA-ELM) were 

evaluated and the best predictive model was selected using a simple ranking method as in the first case 

study. Results show that WOA-GP obtained the best rank of 53 among the nine models as summarized in 

table 2. The actual and predicted values of the chosen model is also shown in figure 7.  

   

Figure 7 Actual rock movement 

measurement vrs predicted 

values by WOA-GP. Source: (Yu, 

Shi, Zhou, Gou, et al., 2021) 
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 Table 2 Performance of models Source:  (Yu, Shi, Zhou, Gou, et al., 2021) 

Method Model Results Rank value Total rank 

R² MSE VAF R² MSE VAF 

GP Train 0.828 1.705 82.822 7 7 7 42 

Test 0.788 1.817 78.924 7 7 7 

WOA-GP Train 0.858 1.475 85.833 9 9 9 53 

Test 0.819 1.679 82.007 9 9 8 

GA-GP Train 0.858 1.550 85.792 9 8 8 52 

Test 0.819 1.679 82.010 9 9 9 

SVR Train 0.692 2.284 69.154 1 1 1 6 

Test 0.640 2.367 64.266 1 1 1 

WOA-SVR Train 0.795 1.862 79.523 4 4 4 18 

Test 0.713 2.116 72.078 2 2 2 

GA-SVR Train 0.795 1.860 79.564 5 5 5 25 

Test 0.713 2.113 72.160 3 3 4 

ELM Train 0.725 2.156 72.529 2 2 2 17 

Test 0.719 2.093 72.144 4 4 3 

WOA-ELM Train 0.800 1.839 80.007 6 6 6 36 

Test 0.781 1.849 78.061 6 6 6 

GA-ELM Train 0.786 1.904 78.560 3 3 3 24 

Test 0.775 1.871 77.514 5 5 5 

 

5. Conclusion 
Measuring the blast-induced rock displacement is very crucial to reducing ore loss and dilution. 

Theoretical review has shown that the blast monitoring device (BMM) is very effective in providing a near 

accurate and reliable measurement of rock displacement than the use of visual markers and numerical 

modeling. Numerical simulation models have their own merits but the challenges to be addressed to 

provide a more accurate model persists. There has been considerable amount of research in this area, 

nonetheless. The machine learning approaches discussed have also proven been effectual in predicting 

material movement, reducing misclassification, and subsequently providing dig limits for shovels and 

reducing losses. The data collected from direct measurement was almost consistent with the predicted 

values of the ML model. Even though the approach is novel, it sets the tone for further exploration of its 

use for blast movement monitoring. 
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Abstract

ShovelSense is a robust shovel mounted X-ray fluorescence sensor that can mea-
sure multiple element grades of each bucket as it is dug at the mine face. The
shovel sensor system allows for the bulk sorting of ore and waste at the mine
face ensuring each truck is sent to its correct destination. Due to the previous
inability of sorting at the truck scale there are not many established methods for
predicting the bulk ore sorting value at a given deposit. The ShovelSense grade
of the truck load is used to define its final destination, which can be different
from the one defined by the short term plan, which is done at block resolu-
tion. In this paper, we present two approaches for quantifying the value of the
truck reassignments based on the measured grade. First, truck loads within the
block are assumed to follow a simple gamma distribution. The second method
uses geostatistical simulation at point support to average the grades at truck or
block resolution. Both distinct data driven methods predict the potential bulk
ore sorting value based on the mine’s current operating selectivity and natural
variability drawn from blastholes or the short term block model. The bulk ore
sorting value predictions are validated with ShovelSense truck diversions from
a dispatch dataset of 28,418 trucks at a low-grade, high-tonnage homogeneous
Cu porphyry deposit. In addition to the algorithms and workflows presented
here, recommendations based on the potential and limitations of each method
are given to practicioners seeking to evaluate the bulk ore sorting opportunity
for any open pit operation.

1. Introduction

The natural variability linked to the mineralization of ore deposits and mining operational
complexity make ore control challenging, resulting in the inevitable loss of ore and dilution of waste
in the ore stream. The accurate sorting of material especially at ore-waste contacts is a significant
challenge in the mining industry which scales with the deposit’s variability (Amirá et al., 2019) and
poor grade control practices (Vasylchuk and Deutsch, 2018). Routine grade control relies heavily
on the measurement of element grades for samples from boreholes, estimation of blast movement,
and constant monitoring with geologists at the mine face. Blastholes are drilled and sampled on
a grid with a spacing that can range from 3 to 10 m depending on the material being blasted.
These grades are used to estimate grades into a block model from which a dig plan is generated.

1Cite as: Faraj F, Ortiz JM, Arnal J (2022) Data driven approaches for estimating bulk ore sorting value,
Predictive Geometallurgy and Geostatistics Lab, Queen’s University, Annual Report 2022, paper 2022-07, 96-118.
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The sparsity of grade measurements, the difficulty of accurately sampling a blasthole, smoothing
introduced through estimation, and material displacement due to blast movement severely limit
the performance of the current grade control processes (Rossi and Deutsch, 2013). Furthermore,
all decisions based on this model are made at block support, which is usually much larger than the
truckload support. This leads to the inevitable ore loss to waste and waste diluting the ore stream,
reducing the efficiency of downstream processes.

ShovelSense is a shovel mounted robust X-ray fluorescence (XRF) based sensor which can
predict elemental grades in each bucket as it is loaded before being dumped into a truck (Figure 1).
This allows the mine to selectively exploit grade variations at a resolution that was not available
before. Significant value can be achieved through bulk ore sorting by reducing the amount of ore
loss to the waste stream and removing waste from material destined for processing. In a typical
setup, the fleet management system (FMS) informs ShovelSense by identifying the buckets that
were combined in a truck and the classification of that truck from the mine plan (e.g., ore or
waste). ShovelSense aggregates the selected ShovelSense bucket grade predictions to the truck
of interest and determines the material classification using the predicted grades. The predicted
material classification is transmitted back to the FMS. If it is different from the original estimated
material classification, the FMS can redirect the truck to the correct destination in a completely
automated fashion requiring no action from the shovel operator or dispatcher.

Figure 1: Schematic of the bucket filling and aggregate XRF spectra acquisition. Fill profile modified after Svanberg et al.
(2021).

Numerous studies have identified the potential for bulk ore sorting revealing that the ore het-
erogeneity (Nadolski et al., 2016; Moss et al., 2018) and the mine’s current ore control efforts
(Sanhueza Passache, 2021) are key drivers in the sorting value in addition to other relevant vari-
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ables such as the sorting efficiency, metal price, processing cost, and operation scale (Li et al.,
2022). Bulk ore sorting evaluation methods will be critical as more mines consider implementing
sensor-based ore sorting systems and decide which are the optimal loading units for sensor instal-
lations. Due to the previous inability of sorting at the truck scale, there are currently limited
published studies quantifying and validating the potential bulk ore sorting value (Li et al., 2019,
2021). Proposed in this paper are two distinct methodologies for assessing the potential bulk ore
sorting value based off truck scaled blasthole grades and variabilities within the selective mining
unit (SMU). The validation of the bulk ore sorting predictions is done by comparing the inferred
value with the value measured from ShovelSense truck diversions at a Cu porphyry mine.

2. Bulk Ore Sorting Value Prediction Workflows

Both bulk ore sorting value prediction approaches are based off the potential revenue generated
from ore recovery and dilution reduction diversions resulting from the reduction of the mine’s
current SMU down to the truck level. The highest resolution ore control data available is used
in a distinct way for each approach to estimate the grades and variability of grades within the
current SMU and discretized to truck sized blocks. The two workflows are a simpler gamma
distribution approach which is easily automated, and a geostatistical dense simulation approach
requiring variogram modeling. Both methodologies start by using or creating an SMU block model
with the ore control data available and discretizing it to truck sized blocks. Then the theoretical
bulk ore sorting value resulting from the ore recovery and dilution reduction truck block diversions
from the SMU block is quantified. Both workflows have the same steps when discretizing to truck
sized blocks and quantifying the value but the grade and variability estimation which drives that
value is distinct (Figure 2).
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Figure 2: Overall methodology for predicting the bulk ore sorting value with either the simple gamma distribution or geosta-
tistical dense simulation approach.

2.1. SMU Discretization to Truck Sized Blocks
The discretization of the SMU blocks to truck sized blocks needs to achieve a mass balance.

The mass of each block is a function of density. For deposits with varying densities this variability
needs to be accounted for. More truck blocks are thus assigned to regions of denser material as the
tonnage is constrained by the truck type. The formula for calculating the number of truck blocks
for each SMU is a simple function of the SMU dimensions, density, and truck capacity which is
rounded to the nearest whole number:

TN = round
(SMUl ∗ SMUw ∗ SMUh ∗ SMUρ

TC

)
, (1)

where l, w, h, ρ are the SMU length, width, height, and density respectively and TC is the truck
capacity.

Figure 3 illustrates two extremely distinct cases where a 20x20x15 m SMU block is discretized
to truck sized blocks for two different densities and truck capacities. Larger SMUs along with
smaller truck capacities will result in more truck blocks for each SMU block and the increased
selectivity will better separate ore and waste generating more value.
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Figure 3: Schematic illustrating the discretization of a 20x20x15 m SMU block to truck blocks for distinct material densities
and truck capacities.

When considering multiple payable or deleterious elements used in a net smelter return or
similar value based cutoff, only the elements which the bulk ore sensing system can measure
should be discretized. In cases where there is an element which cannot be measured by the shovel
mounted sensor, the value of that element for all the truck blocks should be set equal to the
corresponding SMU block. Generally, the more relevant elements the sensor can measure at a mine,
the more valuable the bulk ore sorting tool will be as it provides the highest resolution information
currently possible for ore control. Notice that the truckload volume extracted is approximated by a
rectangular prism with the SMU height and a smaller area in the XY plane. This is not exactly the
geometry of the volume extracted by the shovel to load a truck, but provides a good approximation
of the selectivity associated to the truckloads.

2.2. Simple Gamma Distribution Approach
When the blasthole sampling at a given deposit is not preferential, it can be modeled using

a theoretical distribution without the need for declustering (Chiles and Delfiner, 2012). In cases
where the blasthole sampling is preferential, it must be declustered. Alternatively, the short-term
block model can be used as the input source of grades as it is regularly gridded. Geochemi-
cal element concentrations of ore grades are always positive, have skewed distributions, and are
typically modeled using lognormal distributions (Faraj and Ortiz, 2021) or gamma distributions
(Pizarro Munizaga, 2011; Emery, 2012). For the purposes of estimating the Cu grade in a limited
number of smaller blocks within an SMU, the gamma distribution is chosen as the longer tail of
the lognormal distribution could complicate the SMU reconciliation, especially when the variance
is high (Cadigan and Myers, 2001). When varying multiple elements different distributions could
be chosen based on which best fit each element, and ideally accounting for their relationships. The
probability density for the gamma distribution is given by

P (x) = xk−1e−xθ
θkΓ(k) , (2)

where k is the shape parameter which controls the skewness, θ is the scale parameter which controls
the spread of the distribution, and Γ(k) is the Euler Gamma function. The shape and scale factor
can be written as functions of the mean and variance

k = σ2

µ
, θ = µ2

σ2 (3)

where µ is the mean and σ2 is the variance.
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The gamma distribution method is simple and based mainly off the blasthole data with another
few parameter inputs as detailed in Algorithm 1 and illustrated in Figure 4. Aside from the
blasthole data, SMU dimensions, and truck capacity, which are all fixed, the search radius is the
only parameter which needs to be defined by the practitioner and could be set to 1.25 times the
SMU horizontal length as done here. Squared inverse distance weighted estimates (IDW2) within
the search radius are used to assign the grade of each SMU block and the variance is taken from all
the matched blastholes within the radius as well. Using this gamma distribution, the proportion of
truckload blocks that are above and below the economic cutoff grade can be determined to quantify
the quantity diverted from their original SMU assignment. The exact position within the SMU of
these blocks is irrelevant, only their quantity is of significance.

R(25m)

Blastholes beyond search radiusR
Blastholes within search radius R

SMUi block centroid

IDW2 grade: Z(SMUi)

Variance: σ2(SMUi)

SMUi

20 mBench b

shape: k(SMUi)

scale: θ(SMUi)

Random gamma distributed truck block j
grade withinSMU i block:

Tj ∈ SMUi

Z(Tj ∈ SMUi) = Γ(k(SMUi), θ(SMUi))

18/49 (37%)
Ore recovery
truck blocks

SMU Block
distribution:
Z=0.10 %Cu,
σ2=0.002 %Cu2

0.15 %Cu cut-off

31/49 (63%)
Aligned waste
truck blocks

Figure 4: Methodology for assigning SMU and truck block grades with the simple gamma distribution approach with an example
for a SMU block with a mean grade of 0.10 %Cu and variance of 0.002 %Cu2.
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Algorithm 1: Gamma Distribution Grade Assignment
Input: Blasthole data (BH), SMU data (SMU), truck block data (T)
Input: Benches (b), Search radius (R), Blasthole positions (P (BH)), and grades (Z(BH))
Input: Centroids for each SMU block i (P (SMUi)), and truck blocks j within each

SMU block i (Tj ∈ SMUi)
Output: SMU block grades, variance, and gamma distributed grade for each truck block

1 for each bench b do
/* Filter blastholes, SMU blocks, and truck blocks to bench b */

2

P (BH), P (SMUi) ∈ b

3 for each SMU block i do
/* Search for all matched blastholes (BH′) where the distance d of

P (BH) and P (SMUi) is within R */
4

BH′ = {BH|d(BH− SMUi) ≤ R}

/* Assign IDW2 SMU grade (Z(SMUi)) and variance (σ2(SMUi)) from the
matched blasthole grades (Z(BH′)), average grade (Z(BH′)), and
distances (d(BH′)) */

5

Z(SMUi) =
N∑
n=1

Z(BH′n)
d(BH′n)2 ÷

N∑
n=1

1
d(BH′n)2

6

σ2(SMUi) = 1
N

N∑
n=1

(
Z(BH′n)− Z(BH′n)

)2

/* Calculate the SMU shape (k(SMUi)) and scale (θ(SMUi)) */
7

k(SMUi) = Z(SMUi)2

σ2(SMUi)
, θ(SMUi) = σ2(SMUi)

Z(SMUi)

/* For each of the truck block j draw random gamma distributed grade
(Γ(k, θ)) and scale the truck block grades (Zj(T)) with the SMU grade
(Z(SMUi)) divided by the average truck block grade (Z(T)) */

8

Zj(T) ∼ Γ(k(SMUi), θ(SMUi)), Zj(T) = Zj(T)Z(SMUi)
Z(T)

9 end
10 end
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2.3. Geostatistical Dense Simulation Approach
The use of geostatistical simulations in mining operations is on the rise to quantify heterogeneity

and transfer uncertainty and variability into risk for decision making. A major benefit of simulations
is the ability to quantify the risk associated with the estimation by assessing the spatial variability
(Vann et al., 2002; Rendu, 2002). Here, densely gridded simulations are used to estimate grades at
a truck scale for predicting the potential bulk ore sorting value. Densely gridded simulations have
previously been used to develop high resolution mining models of mineral grades (Charifo et al.,
2013), which have been used for many applications such as informing mining decisions through the
mine value chain (Altinpinar et al., 2020).

The geostatistical dense simulation approach requires only the blasthole data, SMU blocks,
and discretized truck block definitions. First, domains must be established if there is domaining
information available. Then, for each domain, normal score variogram models are developed and
used to generate a number of point support realizations (100 sequential gaussian simulations were
used in our case) in a dense grid defined by the practitioner such as 1 by 1 m in each bench. The
dense grid is averaged to the truck blocks, and then the truck blocks are also averaged to each SMU
block as illustrated in Figure 5. The gaussian simulations proposed serve as an adequate baseline
for typical homogeneous porphyry deposits. However for more geologically complex deposits which
exhibit a high degree of nonlinear features such as veins, channels or folds the simulations could
incorporate locally varying anisotropy (Boisvert and Deutsch, 2011) or different continuity for
different grade ranges through an indicator approach, since standard gaussian simulations have
been shown to miss complex geological structures (Lee et al., 2007).

20 mBench b

Dense geostatistical simulation grid point

2.85 m

SMUi

Tj ∈ SMUi

Blastholes

Figure 5: Methodology for assigning SMU and truck block grades with the geostatistical dense simulation approach.
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2.4. Value Quantification and Validation Methodology
There are multiple ways to calculate the ore recovery and dilution reduction value from the

estimated truck diversions. The optimal way to calculate these will vary from mine to mine. Some
mines ideally use a net smelter return to incorporate additional variables and give an accurate
evaluation. In contrast others may just work based off the Cu content. We propose a generic method
to estimate the ore recovery and dilution reduction value which is applied to both approaches and
the dispatch validation data (Figure 6). For the purposes of comparing the predicted value to
dispatch data for validation, the assumptions and calculations done to quantify the value are not
critical as the same methodology is applied to each. For this deposit, the recovery, recovered
value factor, processing cost, and Cu price are taken as 85%, 85%, 5 USD/t, and 3.50 USD/lb
respectively.

Ore SMU 
Block

Waste SMU 
Block

Value = OreRecoveryValueΣ DilutionReductionValueΣ+
Value = RD*Z*T*R*RVF*P-T*PrΣ

RD – Recovery Diversion
Z – Truck Cu proportion
T – Truck tonnage (t)
R – Recovery
RVF – Recovered value factor
P – Cu price ($/t)
Pr – Processing cost ($/t)

DD*T*Pr

DD – Dilution Diversion
T – Truck tonnage (t)
Pr – Processing cost ($/t)

Σ+

17 Ore Recovery Trucks 14 Dilution Reduction Trucks

Figure 6: Bulk ore sorting value estimation methodology.

3. Bulk Ore Sorting Value Predictions at a Cu Porphyry Mine

Both the gamma distribution and dense geostatistical simulation approach were applied on a
blasthole dataset from a low-grade, high tonnage Cu porphyry mine. The data spans six benches
from which ShovelSense truck data was also collected during several months. There are 23,192
blastholes and 28,418 trucks with ShovelSense grades which are used to validate the bulk ore sorting
value predictions. Figure 7 shows the blastholes and ShovelSense truck Cu grades throughout the
six benches. The Cu porphyry mine has a cutoff grade of 0.15 %Cu and SMU of 20x20x15 m.
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Figure 7: The low-grade, high tonnage Cu porphyry dataset used showing the blastholes and ShovelSense truck grades for each
of the six benches. The vertical scale is four times the horizontal scale.

3.1. Discretization Integrity for Tonnage and Metal Balance
With the mine’s pit density of 2.54 t/m3 there will be 49 truck blocks for each SMU block to

achieve a tonnage balance as outlined in Table 1. From the 23,192 blasthole data, 2,911 SMU blocks
were generated with a corresponding 142,639 truck blocks after filtering out SMU blocks with less
than 10 blastholes in the 25 m radius as these represent blocks along the edges without sufficient
data to be properly evaluated. In addition to achieving a mass balance, the truck block grades
averaged to the corresponding SMU block must also match in metal content. The error metrics
tabulated in Table 1 demonstrate that their is no significant metal mismatch. The discretization
integrity for tonnage and metal content should always be checked for all considered elements as
significant differences could cause errors in the final bulk ore sorting value estimate.

Table 1: Parameters and summary statistics of the SMU to truck block discretization for the tonnage and metal balance.

SMU and Truck Block Tonnage Balance
Parameter SMU Block Truck Block
Width [m] 20 2.857
Length [m] 20 2.857
Height [m] 15 15
Volume [m3] 6000 122
Density [t/m3] 2.54 2.54
Tonnage [t] 15,240 310

SMU and Truck Block Metal Balance
Parameter GammaDistribution - SMU GeostatsSimulations - SMU
Count 2911 2911
Min [%Cu] -9.99e-16 -5.55e-16
Mean [%Cu] 1.46e-18 1.22e-18
Max [%Cu] 8.32e-16 5.55e-16
St Dev [%Cu] 8.53e-17 1.37e-16

For comparing the predicted bulk ore sorting value to the ShovelSense dispatch dataset, the
SMU and truck block data was further filtered to only include blocks within 15 m of a dispatched
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truck. This filter was applied to improve the comparison by roughly matching the SMU and truck
block data to the actual material dug. There will still be some expected noise and errors in the
comparison because there were other shovels without ShovelSense installed working in the same
area but not far enough to filter out.

3.2. Truck Block Grades and Classification
The truck block grades for the gamma distribution were randomly assigned to each block within

the SMU block. The spatial aspect of each truck block is not relevant for the purpose of bulk ore
sorting value predictions. The dense simulation accounts for the spatial distribution of the data
and the continuity is based on the normal score spherical variogram models developed for the three
principal directions of anisotropy given by

γ(h) =


0 for h = 0

C0 + C1

[
3
2
h
a −

1
2

(
h
a

)3
]

for 0 < h ≤ a

C0 + C1 for h > a

, (4)

where C0 is the nugget of 0.20, C1 is the sill contribution of the spherical structure, equal to 0.80,
h is the lag distance, a is the range of 250 m, 140 m, and 80 m for the three directions respectively.

The gamma distributed truck block grades show much higher spatial variability than the dense
geostatistical simulation which drives the difference in the theoretical ore recovery and dilution
reduction from the SMU. A zoomed in section on the SMU block model in Figure 8 highlights the
difference in the spatial distribution of grades for each truck block within the SMU blocks. There are
even many blastholes with different classification from their host SMU block which is also captured
by the gamma distributed grades but not by the dense geostatistical simulation throughout this
variable zone. This is explained because, even for the truck blocks, the geostatistical simulation
takes into account the change of support, that is, the fact that the truckload is much larger in
volume than the blasthole.
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Figure 8: Spatial plots comparing the SMU and truck block grades and classifications for the gamma distribution and geostats
simulation within a variable section.

The SMU grade and variability has the biggest influence on the proportion of truck blocks
classified differently than the SMU blocks. Figure 9 shows that most of the difference in material
classifications occur with more variable SMU blocks near the cut-off of 0.15 %Cu. Even highly
variable blocks don’t result in many theoretical diversions if the SMU grade is significantly higher
or lower than the cut-off. Compared to the ShovelSense truck grades, the gamma distribution was
more variable while the geostatistical simulation was less variable (Figure 10). Despite applying
the 15 m filter, the ShovelSense data still represents less than half of the predicted tonnages and
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could have dug more homogeneous areas.
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Figure 9: Scatter plots of the truck block grades against their respective SMU block grade for the gamma distribution and
geostats dense simulation approaches with a black dashed line highlighting the 0.15 %Cu cut-off.
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Figure 10: Histograms showing the distribution of Cu grades for the gamma distribution, geostats simulation, and ShovelSense
trucks.

The material classification predictions as either ore or waste varied significantly between the
predictions and ShovelSense dispatch diversions (Figure 11). The gamma distribution approach
predicted a total of 20.1% diversions which is similar to the 22.7% measured by the ShovelSense
dispatch data but the predictions resulted in much more dilution reduction than ore recovery which
is opposite of the ShovelSense dispatch data. The geostats simulation significantly underpredicted
the diversions at only 6.1%. The main discrepancy between the deviation types of the gamma
distribution and ShovelSense dispatch data is due to a cut-off change and short term blending
campaigns carried out during the study period without the data being available to account for it.
Nevertheless the diversions are high due to the majority of the grades being close to the cut-off
which is expected of a homogeneous, low-grade, and high-tonnage Cu porphyry deposit.
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Figure 11: Confusion matrices showing the distinct material classifications of the gamma distribution and geostatistical sim-
ulation predictions as well as ShovelSense compared to the dispatch classification.

3.3. Comparing the Predicted and ShovelSense Diversion Value
Since the ShovelSense installed shovel did not dig the entirety of the six benches, there will be

predicted volumes not present in the validation data even after applying the filter to only include
blocks within 15 m of a ShovelSense truck. In order to make a fair comparison it is important to
normalize the predicted value by the tonnage. The weighted average bulk ore sorting value per ton
mined for the ShovelSense diversion data is 1.04 USD/t which was best predicted by the gamma
distribution at 0.94 USD/t while the geostats simulation predicted a lower value at 0.22 USD/t
(Table 2). Interestingly, the gamma method value predictions for benches which did not include
data containing ramps lined up with the ShovelSense diversion data by a weighted average of about
9.3% which is 6.6% better than those with ramps at 15.9%. Despite the best efforts some noise such
as the effect from the ramps is always to be expected with the comparison of two distinct spatial
datasets, especially when considering that the blastholes are fixed in space and the shovel with
ShovelSense measures material in situ after having been displaced and mixed by blast movement.

Table 2: Normalized bulk ore sorting value for the two approaches compared to the ShovelSense dispatch data, the average is
multiplied to a total using the 8.81 Mt from the 28,418 ShovelSense trucks.

Bulk Ore Sorting Value per ton mined
Bench Gamma Distribution Geostats Simulation ShovelSense Dispatch
Bench A [USD/t] 0.80 0.25 0.69
Bench B [USD/t] 0.99 0.22 1.03
Bench C [USD/t] 0.94 0.23 1.09
Bench D* [USD/t] 0.97 0.20 1.13
Bench E* [USD/t] 0.93 0.20 1.2
Bench F* [USD/t] 0.90 0.26 0.83
Weighted average [USD/t] 0.94 0.22 1.04
Total from 8.81 Mt [MUSD] 8.28 1.94 9.16

*Includes a ramp connecting two distinct benches introducing noise in the ShovelSense dispatch data
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4. Discussion

4.1. Discrepancies and Alignment in Ore Recovery and Dilution Reduction Esti-
mates

While the value predictions roughly aligned for the gamma distribution approach, there was
a 6% average discrepancy in the diversion predictions. The mine labels were assigned based on
the mine plan at the time of mining, during which the cutoff changed and there were short term
blending campaigns adding inconsistencies to the originally assigned material type compared to
the fixed 0.15 %Cu cut-off applied to the ShovelSense truck grades. The effects of changing the
cut-off or any kind of special campaigning could be prevented by using the historical ShovelSense
classifications at the time of digging but this data was not available. In order to allow for a more
fair comparison the gamma distribution method was compared to the ShovelSense diversions based
on inverse distance weighted estimates of the blasthole Cu grade to each truck. When compared
to the blasthole classifications, the average discrepancy in diversions reduced to an impressive
0.6%. After exluding ramp data, a bench by bench analysis of the diversion predictions with
the gamma method correlated to the ShovelSense diversions from blasthole classifications with a
pearson correlation coefficient of 0.80 (Figure 12). The weighted average bulk ore sorting value per
ton mined estimate based off ShovelSense diversions from the blasthole estimates is 0.90 USD/t
which deviates by only 4% from the gamma distribution estimate of 0.94 USD/t.
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Figure 12: Confusion matrices showing the distinct material classifications of the gamma distribution predictions and Shov-
elSense compared to a blasthole classification. Also shown a scatter plot of the predicted diversions and the ShovelSense
diversions from the blasthole classification for ore recovery and dilution reduction with the different shades representing dis-
tinct benches.

In addition to predicting the bulk ore sorting value from diversions, the additional Cu metal
and reduced waste processed by the mill can be calculated. The mine plan based on blasthole
classifications would have produced 14,607 t Cu metal and generated 2.5 Mt of waste. With
ShovelSense the Cu production increases by 9% to 15,990 t Cu metal and generates 2.9 Mt waste
which is a 14% reduction in the 0.4 Mt of waste processed by the mill. This compares well to what
the mine plan would be based on the gamma distribution method with the SMU blocks normalized
to the same 28,418 truck tonnage which would have produced 14,756 t Cu metal and 2.9 Mt waste.
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The predicted truck block diversions from the SMU blocks would increase Cu metal by 6% at
15,583 t Cu metal and the waste generated would have been 3.4 Mt waste, an 18% decrease in the
0.5 Mt of waste processed by the mill. The gamma distribution method predictions of Cu metal
increase and processed waste reduction align within 4% of the ShovelSense truck diversions from
the blasthole classifications.

4.2. Potential and Limitations of the Geostatistical Dense Simulation and Gamma
Distribution Approach

The simplicity of the gamma distribution method likely influenced its effectiveness at predicting
the bulk ore sorting value over the dense geostats simulation due the little information available
for the study. To make the geostatistical simulation approach more robust, domaining information
would have been required as treating the entire dataset as a single domain likely had an over
smoothing effect (Lee et al., 2007). Despite the simply defined simulation parameters and single
domain simulation, the resulting geostats simulation distribution matched the ShovelSense truck
grades much better than the gamma distribution. Interestingly the higher variability of the gamma
distribution may have influenced why its predicted value better matched the ShovelSense dispatch
data since the higher in situ variability replicates the effect of blast movement and mixing which
is not accounted for in the static block models. The gamma distribution algorithm could also be
fine tuned by capping the max grade or shifting the median grade to match the mean SMU grade
depending on the input data for a given deposit.

The theoretical standard deviation at truck support was estimated to be 1.20 %Cu based on
the blasthole data using the normal score variogram. Sensitivities were made of the nugget effect
to calibrate this truck block variance with the ShovelSense data. The standard deviation for the
gamma distribution method was 0.140 %Cu which is 0.020 %Cu higher while ShovelSense was
0.104 %Cu which is 0.016 %Cu lower. Despite the 15 m filter applied, the discrepancy in the
variance may have still been influenced by the ShovelSense not capturing more variable areas while
the gamma method did evaluate some of the more variable areas where the shovel did not dig.
Furthermore the variance in the gamma distribution approach could have been scaled to better fit
the deposit. Ultimately the variance of Cu grades depends on the type of deposit (Gerst, 2008)
and if the optimal distribution is uncertain, the gamma or lognormal distributions are adequate
options for most base metal deposits (Journel, 1980).

When using the proposed, or any bulk ore sorting value estimation tool, it is crucial to consider
the data being used. Many mines have shovels which work exclusively in waste where there is
no potential for bulk ore sorting and thus using an entire dataset from the mine may lead to
inaccurate results. To better predict the value a shovel would unlock with a bulk ore sorting sensor
representative data should be used from the pit, phase, or area where it is working. Predictions
could even be made for different phases of the mine to determine a sequence for shovel sensor
installations based on which would maximize the net present value.

When validating bulk ore sorting predictions as done here there are many variables which are
important to consider. The presence of ramps could add noise to the analysis as truck loads by
the shovel will need to be assigned to either the bench above or below. Also assuming a fixed
cut-off grade could be troublesome if the mine changed their cut-off or had some kind of blending
campaigns during the time period being analyzed, these factors could be incorporated if that
information is available.
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4.3. Influence of Selectivity and Deposit Heterogeneity on the Bulk Ore Sorting
Value

The larger SMUs will have a greater bulk ore sorting value when decreasing the selectivity down
to the truck scale. The bulk ore sorting benefit correlates with the remnant uncertainty within a
mining block which depends on the geological variations and sampling but scales with increasing
block size (Chiquini and Deutsch, 2020). Efforts have been made to quantifying the recoverable
reserves from exploration drill hole data to the SMU scale (Boisvert et al., 2008) and studies have
investigated the benefits and downsides to mining with varying smaller block sizes (Jara et al.,
2006). With ShovelSense the selectivity is down to the truck scale and the gamma distribution
bulk ore sorting tool can be run with varying SMU sizes and truck capacities to quantify the bulk
ore sorting value at a truck scale selectivity.

For the 42.84 Mt mined through six benches in the low-grade, high tonnage Cu porphyry
deposit studied here, the gamma distribution bulk ore sorting value prediction tool was run with
several distinct SMUs and truck capacities used in the industry for large open pit mines. The SMU
was varied from 10x10x15 m to 30x30x15 m and the trucks from 205 t to 400 t. As expected,
the most benefit is achieved when reducing a larger SMU to the smallest truck available, however
there is no consideration for the significant negative impact the more selective mining would have
on production costs. However note that the potential limitation of the current approach is that
the support effect is not properly handled. The current data compares sample information taken
at point support and averaged over each shovel load with a discretized simulated truckload block.
This requires further investigation to ensure the smoothing due to the change of support (from
”point” blasthole data to block data) is properly accounted.
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Figure 13: Gamma distribution bulk ore sorting value when digging through 42.84 Mt in six benches varying the SMU and
truck capacity to standard values for large open pit mines.

Another important key driver in the bulk ore sorting value is the natural variability of the
deposit. The schematic in Figure 14 illustrates how the ore recovery value scales with the SMU
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grade variance in four distinct deposits based off the authors’ experience. The gamma distribution
bulk ore sorting tool from the Cu porphyry data used in this study achieved a strong pearson
correlation coefficient of 0.85 when comparing the SMU grade variance to the ore recovery value
(Figure 14). The relationship between the grade variability and ore recovery value is expected to
scale with more variable deposits. Cu porphyries typically represent some of the more homogeneous
deposits which still present significant opportunities for bulk ore sorting when considering the truck
scale.
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Figure 14: Schematic showing how increasingly heterogeneous deposits generate higher ore recovery value with real data from
the gamma distribution bulk ore sorting tool shown for the homogeneous low grade high tonnage Cu porphyry deposit.

As a deposit’s heterogeneity increases the mine will benefit more from increasing its selectivity
with a bulk ore sorting system. While a system like ShovelSense has a negligible impact on mining,
the use of a smaller trucks will likely have a negative impact on production and costs. If the
operational complexity can be handled, extremely heterogeneous areas could even justify the use
of smaller shovels and bucket level sorting by using two trucks side by side to solely load each one
with either ore or waste separately. There is room for optimizing the selectivity and productivity
to maximimize the net present value as illustrated in Figure 15. Areas with lower variability
will benefit more from a more productive mining method while areas with higher variability will
generate additional value with an increased selectivity.
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Figure 15: Schematic representing how the maximum net present value is achieved by optimizing the production rate and
selectivity based on the loading and haulage systems available. Front end loader picture from Caterpillar (2022), excavator
picture from Hitachi (2022), and rope shovel picture from Komatsu (2019).

The gamma distribution bulk ore sorting value prediction tool could even be used by mines
which already have ShovelSense installed. Assuming the mine has mining equipment with distinct
selectivity and productivity, the predicted bulk ore sorting value can be used to optimize where to
send each available unit in the fleet. For example considering the bench shown in Figure 16 more
selective loading and hauling units can be sent to dark green areas with high predicted sorting
value while bigger, less selective units are sent to more homogeneous areas where the sorting value
is predicted to be low as these would benefit more from the increased production rate.
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Figure 16: Map showing the bulk ore sorting value prediction for a bench indicating areas which would benefit from either
more selectivity or a higher productivity.
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5. Conclusion

The discretization of SMU blocks to theoretical truck blocks was proven to be an adequate
method for simulating truck grades based on the average grade and variance of blastholes surround-
ing the SMU blocks. Various bulk ore sorting value parameters based on ShovelSense diversions
from their blasthole classification were successfully predicted by the simple gamma distibution
method (Table 3). The minor discrepancies between the gamma distribution method predictions
and ShovelSense truck data is likely due to a slight overprediction of the variance due to the high
degree of homogeneity within the studied deposit. The dense geostats simulation did not compare
well with the ShovelSense truck data likely due to poor domain definition and likely a discrepancy
in assessing the support effect. A better understanding of the post blast grade variability at the
truck scale could also serve to inform and improve the bulk ore sorting value predictions.

Table 3: Summary of the various gamma distribution method predicted parameters compared to the ShovelSense diversions
from blasthole classifications.

Parameter Gamma Distribution Method ShovelSense/Blasthole diversions Difference
Ore recovery diversions 7.0% 7.4% -0.4%
Dilution reduction diversions 13.1% 12.3% 0.8%
Cu metal increase 6% 9% -3%
Dilution decrease 18% 14% 4%
Sorting value from 8.81 Mt 8.28 MUSD 7.93 MUSD 0.35 MUSD

Here the bulk ore sorting value was estimated for a low-grade, high tonnage Cu porphyry mine.
Future work should consider comparing deposits with distinct natural variability as the deposit’s
heterogeneity likely has the strongest impact on the bulk ore sorting value. While increasingly
variable deposits will reap more benefits from bulk ore sorting, even the more homogeneous Cu
porphyry mines as the one discussed here present various opportunities to reroute trucks to their
correct destinations. Ultimately, when working with a selectivity at the truck scale most magmatic
base metal deposits will present various opportunities for bulk ore sorting.

The value presented here only include the immediate benefits from recovering additional ore
and reducing dilution. The calculation of these immediate benefits will vary from mine to mine
but the most precise information available should be used to get most accurate estimates. There is
still a big need to better understand the impact bulk ore sorting has downstream. A few examples
include increasing the grade and reducing the variability in the mill feed which could improve
recovery (Kurth, 2021), the environmental benefits reducing the tons of CO2 emitted per ton of
concentrate (Sturla-Zerene et al., 2020), or the savings on the operational costs such as pneumatic
maintenance, fuel, or electricity on transportation equipment (de Werk et al., 2017), and the liner
or steel balls of the SAG mills for comminution equipment (Avalos et al., 2020; Yahyaei et al.,
2009).
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Abstract 
Geochemical data plays an important role in supporting mineral deposits explorations 
in various ways. With the growth of deep learning methods utilized in mineral 
explorations, the demand for more geochemical data with more granularity keeps 
increasing. In contrast, the acquisition of geochemical data is usually expensive and 
time-consuming. In this work, we attempt to apply the spatial multivariate morphing 
transformation on geochemical data for data augmentation.  This method decorrelates 
geochemical data both spatially and statistically by mapping the data into a multi-
Gaussian space. Results show that this method is effective on geochemical data, but 
there are still problems that might be caused by the low stationarity and high 
dimensionality of geochemical data. 

 

1. Introduction 
Geochemical data is one of the most critical data that are used in mineral deposit exploration, especially 

in regional prospectivity mappings. Using geochemical data can provide vital information for discovering 

unknown mineral deposits like the spatial association of geochemical patterns, inter-elemental 

relationships, and geochemical anomalies that are caused by mineralization (Zuo and Xiong, 2020). 

Various methods had been adopted to process geochemical data to extract mineralization information. 

Among them, deep learning methods show a strong ability to intelligently find hidden patterns and 

features in geochemical data. The promise of such ability comes from large amounts of training data, and 

existing geochemical data usually cannot meet the demands and need augmentation. Traditional data 

augmentation methods designed on image data could result in severe problems when applied to 

geochemical data, like creating patterns in the wrong direction or adjusting all elements in the same scale.  

To augment geochemical data, spatial multivariate morphing transformation (SMMT) (Avalos and Ortiz, 

2022; Avalos et al., 2022) is utilized in this study. SMMT takes randomly sampled data from the initial 

dataset and statistically decorrelates them by mapping them from the initial multivariate space into a 

multi-Gaussian space. The decorrelated variables then are simulated with the spatial structure of random 

Gaussian values by geostatistical simulation algorithm. The simulated data are back-transformed by 

interpolating from the multi-Gaussian space back into the initial space. The interpolated data have a great 

reproduction of the multivariate features and relationships of the initial dataset and hence can be used 

as augmented data. SMMT provides a method to augment geochemical data that not only enlarges the 

variability of the initial data, but also honors the histogram and spatial variabilities of the initial data. 

                                                           
1 Cite as: Li T, Ortiz JM (2022) Spatial multivariate morphing transformation on geochemical data augmentation, 
Predictive Geometallurgy and Geostatistics Lab, Queen’s University, Annual Report 2022, paper 2022-08, 119-131. 
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In this article, we summarize the application of SMMT in geochemical data augmentation, providing the 

workflow of SMMT in augmentation, we show results under different conditions, and discuss about 

problems we are facing and some implementation details. 

2. A brief introduction to the geochemical data 
The geochemical data used in this study is collected from the National Geochemical Surveying and 

Mapping Project of China (Wang et al., 2007; Xie et al., 1997). Standardized stream sediment samples 

from southern Jiangxi in China with an average sampling density of 1 sample/km2 were taken and 

considered as the average geochemical concentration within this sample area (Xie, 1978). A total of 25 

elements can be used in public studies, containing 7 major elements and 18 trace elements. All these 

elements are preprocessed by removing void values and negative values. All the data is located in a 335 × 

335 grid, each grid cell represents 1km × 1km. Fig.1 shows the concentration of iron in the study area. 

 

Figure 1: Geochemical distribution of iron (Li et al., 2022). 

3. Spatial Multivariate Morphing Transform 
In this section, we mainly focus on the workflow of applying SMMT to geochemical data, the theoretical 

background of SMMT can be reached in Avalos and Ortiz (2022). 

1. Choosing landmark points randomly from the original data. Generate unduplicated locations 

from the grid of the study area as the landmark points for one iteration. Geochemical data on 

landmark points are normalized with an average of 0 and with a standard deviation of 1. Calculate 

the omnidirectional direct-variogram of each element and the cross-variogram between elements. 
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2. Generating Morphing factors and pairing with landmark points. Draw morphing factors for each 

element independently from a standard multi-Gaussian distribution with the same amount of 

landmark points. Compute the empirical cumulative distribution functions (CDF) of both landmark 

points and morphing factors. Pair the cumulative probability values of landmarks and the 

morphing factors with optimal transport. Optimal transport computes the Euclidean distances of 

every pair of samples on each dimension and attempts to find the optimal pair with the shortest 

distance over all dimensions. Calculate the omnidirectional variogram of paired morphing factors. 

3. Calculate the average of variograms of generated morphing factors. Repeat Step 2 n 

times (100 times in this study). Calculate the average of all the omnidirectional variograms 

of morphing factors. The average variogram will be taken as the variogram model for 

sequential Gaussian simulation in Step 4. 

4. Sequential Gaussian simulation. Simulate each set of generated morphing factors 

independently using the sequential Gaussian simulation (Goovaerts, 1997) for m times 

(100 times in this study). Compute the direct- and cross-variograms of the simulated data 

and make sure such variograms characterize the spatial structure of the morphing factors. 

5. K-nearest thin plate spline interpolation. Map the simulated data from Gaussian space 

of value range (-∞, +∞) into logit space of value range (0, 1), to be conditioned to the 

cumulative probability values of landmark points of the value range of (0,1).  For each 

simulated point, k-nearest landmark points are utilized as the control points in the thin 

plate spline interpolation (Bookstein, 1989). After interpolation of every point except for 

the landmark points, the result is considered as one augmentation of the original 

geochemical data. Repeat from step 1 for further augmentation until all the original points 

are used as landmark points.  

 

Figure 2: Schematic diagram of the workflow of the SMMT. 
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4. Results 
The workflow in section 3 has been applied to three different sets of geochemical data for specific reasons. 

The subset with two dimensions contains two elements, iron and manganese, to intuitively illustrate the 

effectiveness of the SMMT; the subset of 25 dimensions contains the whole geochemical data, to test the 

SMMT on high dimensional data without extra preprocessing; and the subset with 17 dimensions is the 

production of preprocessing that removes the elements that are not correlated with other elements. Next, 

we show the results of the two-dimensional and 17-dimensional cases. Results from the 25-dimensional 

case are similar to those of the 17-dimensions. 

4.1. Subset with 2 dimensions 
Only 2 elements of the geochemical data are selected for illustration of the application of the SMMT on 

geochemical data. The omnidirectional direct-variograms and cross-variogram of two elements are shown 

in Fig.3. Spatial structures on both elements and between elements are observed. 

 

Figure 3: The omnidirectional direct-variograms and cross-variogram of two elements. 

Fig.4 shows the landmark points (blue points) in the original space and the empirical cumulative 

distribution space and one set (out of 100 sets) of morphing factors (red points) in the Gaussian space and 

the empirical cumulative distribution space on the left side. The right side of Fig.4 shows part of the pairing 

of landmark points and morphing factors.  

 

Figure 4: Pairing of the landmark points and morphing factors with 2-dimensional data. 
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After pairing with landmark points, the sequential Gaussian simulation is applied to every set of morphing 

factors with the average variogram model of the morphing factors. We use a maximum of 60 conditioning 

points with data assigned on nodes, and a search radius of 50 km. One realization of the simulation results 

is displayed in Fig. 5 (a). The spatial structure of the simulated data can be observed. The reproduction of 

variograms is shown in upper Fig.6. The direct variogram of iron and the cross variogram between iron 

and manganese are well-reproduced, but the direct variogram of manganese gets higher variance than 

the average variogram model. 

 

Figure 5: One realization of sequential Gaussian simulation, landmark points (dots in (a) with values), the respective result of 
SMMT and original data.  

 

Figure 6: Variograms of the TPS results of 2-dimensional data.  

The morphing factors are mapped into the original space via thin-plate spline interpolation (TPS). All 

points in the grid (except landmark points) are interpolated via TPS based on the 30 nearest landmark 

points. One of the results of the TPS is displayed in Fig.5 (b), which shows a similar spatial structure to the 

original data. The lower part of Fig. 6 shows the variogram of original geochemical data and the variogram 
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of the results of TPS. The variograms of TPS results show higher variances at most lag distances and the 

variograms of manganese are showing a similar structure but with unstable variances. 

4.2. Preprocessed data with 17 dimensions 
One of the purposes of utilizing the SMMT is to decorrelate the original geochemical data before 

simulation. However, high-dimensional data may disturb the optimal transport and affect the pairing. We 

reduce the dimension of geochemical data by removing some elements that are considered not correlated 

to other elements. 17 elements are left and used for augmentation with the SMMT. The omnidirectional 

direct-variograms and some of the cross-variograms are displayed in Fig.7 and Fig.8. All the elements are 

showing spatial structures with different variances. 

 

Figure 7: Omnidirectional direct variogram of landmark points.  



 
© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 125 

 

 

Figure 8: Omnidirectional cross variograms of landmark points (showing 10 out of a total of 136). 

The pairing result of the iron and manganese of 17-dimension data is displayed in Fig. 9. With the higher 

dimension, the optimal transport of middle rankings is more cluttered than the top/last ranking in the 

cumulative probability values.  

 

Figure 9: Pairing of the landmark points and morphing factors with 17-dimension data. 

Fig. 10 (a) shows one realization of the sequential Gaussian simulation of the 17-dimension data. The 

simulation result exhibits poor spatial continuity with a fragmented spatial structure, which also resulted 

in high nugget effects in the direct-variograms shown in Fig. 11. The cross-variograms which are shown in 

Fig.12 indicate that all the elements are decorrelated.  
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Figure 10: One realization of sequential Gaussian simulation, landmark points (dots in (a) with values), the respective result of 
SMMT, and original data.  

Consequently, the TPS interpolations on such simulation results shown in Fig.10 (b), reproduce the 

trending of geochemical distribution on a large scale, but the spatial structure is not well-reproduced. Fig. 

13 and Fig. 14 show the direct-variograms and cross-variograms of the results of the TPS interpolation. 

The spatial structure of the original data is reproduced but the average variances of results are mostly 

higher than those of the original data, which is similar to the 2-dimensional data. 

 

Figure 11: Direct-variograms of sequential Gaussian simulation results of 17-dimension data.  
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Figure 12: Cross-variograms of sequential Gaussian simulation results of 17-dimension data (showing 10 out of a total of 136).  

 

Figure 13: Direct-variograms of the TPS results of 17-dimension data.  
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Figure 14: Cross-variograms of the TPS results of 17-dimension data (showing 10 out of a total of 136).  

5. Discussion 
Application of the SMMT on the different settings of geochemical data demonstrates that such a method 

can decorrelate the geochemical data and reproduce the spatial structures separately with a univariate 

geostatistical simulation algorithm. This section provides a discussion on several issues in applications on 

high-dimension data and some implementation details. 

5.1. The curse of dimensionality 
There are usually more than ten dimensions in geochemical datasets. Such high dimensionalities lead to 

a huge volume of data space and the available dataset is often inefficient to promise the effectiveness of 

algorithms.  

In this study, the pairing in the optimal transport is sensitive to dimensionality. The optimal transport is 

trying to find the shortest distance to map data from the original space to a decorrelated Gaussian space 

while preserving their univariate relationships, which are their cumulative probabilities in this study. The 

shortest distance is the sum of distance on every dimension. When dimensions increase, the global 

optimal transportation on the whole dataset cannot preserve the univariate relationships on each 

dimension. Fig.15 shows the pairing results of a landmark point and its corresponding morphing factors 

with different dimensions. The ranking of the cumulative probability of landmark points becomes more 

unstable when the dimension increases. 

 

Figure 15: Pairing results of different dimensions.  
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The curse of dimensionality can be handled in two directions: The first is to increase the amount of 

available data, which is infeasible in this study; The other one is to restrict the data space by preprocessing 

the data to remove uncorrelated dimensions and various dimension reduction methods. 

5.2. Landmark points selection 
In geochemical data augmentation, the algorithm is expected to reproduce all the values and spatial 

structures of the original data. Therefore, all the points in the original data should be selected at least 

once as landmark points. The number of landmark points in the augmentation of geochemical data by the 

SMMT is a paradoxical parameter to consider. The more landmark points selected, the more values and 

spatial structures will be captured and reproduced, but the variability of augmented data becomes less. 

5.3. Mapping simulated values 
To project simulated Gaussian values back into the original data space, we use spatially k-nearest 

neighbors of the interpolated point as the anchor of projection in the TPS. This spatial interpolation of the 

simulated Gaussian values follows the ‘First Law of Geography’, which infers that near things are more 

related than distant things (Tobler, 1970). However, spatial interpolation may cause the high variances 

observed in Fig.6 and Fig.13 for not considering the statistical pattern of the landmark points. There is an 

alternative way as the statistical interpolation that projects the Gaussian values by their statistically k-

nearest landmark points. The influences of statistical interpolation on geochemical data are worth 

exploring in future studies. 

In the spatially k-nearest TPS interpolation, a different number of anchor points, k, produces a different 

result of interpolations (Fig.16). Theoretically, the number of anchor points must be larger than 

dimensions+1 while dealing with 2-D data (Rohr et al., 2001). With further increase of the anchor points, 

high values of landmark points show a stronger influence on neighborhoods. Therefore, the number of 

anchor points in TPS can be decided either based on the variogram of landmark points or domain 

knowledge of the geochemical data. 

5.4. Implement details 
In implementing the workflow of the SMMT, there are serval tricks to accelerate the procedures. 

1. Multi-processing of the sequential Gaussian simulation. The sequential Gaussian simulation in 

GSLib can only simulate one dimension at one time. When simulating high-dimensional 

geochemical data, using the same executable program of the sequential Gaussian simulation with 

different parameter files will reduce the time on simulation. 

2. Finding k-nearest points in an adjustable window. When projecting simulated Gaussian values 

back into the original data space, new interpolated points will be added into landmark points for 

better reproduction of the local structure. However, finding the k-nearest points of the simulated 

data requires the distances with all the other points which is a heavy calculation for the algorithm 

with a huge number of landmark points. A window of adjustable size is used to deplete such 

calculation. The size of the window is decided by the on-time density of the landmark points and 

to make sure there are more than k points inside.  
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Figure 16: TPS results of different numbers of anchor points (k).  

6. Conclusion 
In this paper, we presented the workflow of the SMMT on geochemical data for data augmentation. Two 

sets of geochemical data with a different number of elements are utilized in the SMMT. Results of both 

sets of geochemical data have shown that the SMMT could decorrelate the data and reproduce the spatial 

structure of the geochemical data, but the variances of the augmented data were higher than the original 

data. Several problems that might cause this problem were discussed and future studies on improving the 

pairing in the optimal transport by reduction of data space and different ways of interpolation were issued 

to be done. 
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Abstract 
Generative Adversarial Network, known as GAN, is one of the most promising 
architectures of generative models based on deep learning. The main purpose of the 
generative models is to generate synthesized data from the summarized distribution 
of given data. Therefore, finding the explicit or implicit approximation of the underlying 
real distribution of known data contributes the most to the ability of the generative 
models. With recent advances in deep learning algorithms, the impressive performance 
in recognizing the pattern of data further enhanced GAN’s ability to synthesize data 
that fits in the distribution of real data. Such ability has great potential in the geoscience 
domain, in which the cost of new data is expensive. In this brief article, GAN, as a deep 
learning-based generative model within an adversarial framework, is introduced along 
with theoretical foundations, training procedures, and some variant structures of GAN.  

 

1. Introduction 
As we are going into the era of data, data science with deep learning algorithms are making striking 

achievements in lots of domains and changing our life. These data-driven methods have great abilities in 

discovering underlying hierarchical models that represent probability distributions over offered data 

(Bengio, 2009). The promise of such strong ability comes from a huge amount of input data training 

millions of parameters in these deep learning algorithms. In real applications like mining domains, data 

acquisition could be expensive and time-consuming. Researchers attempt to sidestep more data 

acquisitions by augmentations of known data, including translation, rotation, and flip (Krizhevsky et al., 

2012). The diversity of data obtained by these minor modifications of data is relatively small. This 

motivates the utilization of generative models to produce synthetic data with more variability. Generative 

models approximate the real underlying probability distribution of input data and yield synthetic data 

within the best estimation of data distribution. However, difficulties in approximating many intractable 

probabilistic computations that caused by maximum likelihood estimation and related strategies hinder 

the performance of generative models (Goodfellow et al., 2014).  

Generative Adversarial Network, as in its name, is a generative model trained in an adversarial net 

framework. GAN is normally composed of two networks, the discriminator and the generator. The 

discriminator is a classifier that tries to determine a sample more likely from real data distribution or GAN-

modeled distribution and to separate synthetic data from real data. The generator learns to create 

synthetic data by incorporating feedback from the discriminator and tries to have a better estimation of 

the real data distribution to produce more realistic synthetic data. The basic principle of GAN is inspired 

by a two-player zero-sum game, in which each gain of utility is exactly the loss of the other player. The 

                                                           
1 Cite as: Li T, Ortiz JM (2022) Generative Adversarial Network 101, Predictive Geometallurgy and Geostatistics Lab, 
Queen’s University, Annual Report 2022, paper 2022-09, 132-140. 
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competition between the discriminator and the generator promotes them to get trained and improve 

their methods until no one could ever win the game. When the competition terminates at an equilibrium 

point of the discriminator and the generator, which is called Nash equilibrium in game theory (Ratliff et 

al., 2013), GAN can be considered to have captured its best approximation of the distribution of offered 

data and hence can generate new data within that modeled distribution. Theoretically, any differentiable 

function that maps data from one space to another can be used as the discriminator and the generator. 

GAN is initially implemented by multilayer perceptrons and commonly by variants of neural networks 

nowadays. 

In the following sections, we will introduce some theoretical foundations of GAN, GAN implementations 

of these foundations, the structure and training procedures of GAN, and we will end with a brief review 

of variants of GAN. 

2. Theoretical Foundation of GAN 

2.1. Estimation on distribution 
Generative models aim to discover the underlying distribution 𝑃𝑑𝑎𝑡𝑎(𝑥)  of offered data (also called 

probability density function) which is composed by samples {𝑥1, 𝑥2, … , 𝑥𝑛}. In real practice, 𝑃𝑑𝑎𝑡𝑎(𝑥) is 

usually unknown and extremely intricate. The goal of generative models is to find the best approximation 

of 𝑃𝑑𝑎𝑡𝑎(𝑥), which can be defined by a set of parameters 𝜃, denoted as 𝑃𝐺(𝑥; 𝜃). By the way of finding 

the best approximation of 𝑃𝑑𝑎𝑡𝑎(𝑥), generative models can be classified into two classes: explicit density 

model and implicit density model. An explicit density model assumes the distribution and utilizes true 

data to train the model containing the distribution or fit the distribution parameters. An implicit density 

model produces synthetic data without an explicit distribution and uses produced data to modify the 

model.  

 

Figure 1: Illustration of estimation (orange) of real probabilities distribution (green) based on samples (Dumoulin et al., 2017). 

To figure out how generative models find the best approximation of 𝑃𝑑𝑎𝑡𝑎 utilizing a limited amount of 

real data, maximum likelihood estimation, as a representative of generative models, is illustrated. The 

likelihood function (Eq.1) is defined by the joint probability between real samples and the approximation 

distribution, which is used for the estimation. 

𝐿 = ∏ 𝑃𝐺(𝑥𝑖;
𝑛

𝑖=1
𝜃) (1) 
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To maximize the likelihood function, the best set of parameters 𝜃∗ is calculated as: 

𝜃∗ = arg max
𝜃

𝐿 (2) 

The natural logarithm of the likelihood function is often used for calculation convenience. Since the 

logarithm is monotonic, the maximum of both functions occurs at the same value of 𝜃. 

𝜃∗ = arg max
𝜃

ln ∏ 𝑃𝐺(𝑥𝑖;
𝑛

𝑖=1
𝜃)

 = arg max
𝜃

∑ 𝑙𝑛

𝑛

𝑖=1

𝑃𝐺(𝑥𝑖; 𝜃)

               ≈ arg max
𝜃

𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝑃𝐺 (𝑥; 𝜃)] (3)

 

Eq. 3 is the main indicator for training both the generator and the discriminator in GAN, as well as where 

the adversary happens, which is going to be introduced in the next section. 

If we go further on Eq. 3, minus it with the probability distribution of real samples in their own distribution, 

which is independent of 𝜃, as 

𝜃∗ ≈ arg max
𝜃

𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝑃𝐺 (𝑥; 𝜃)]

                                                        = arg max
𝜃

𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝑃𝐺 (𝑥; 𝜃)] − 𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎

[log 𝑃𝑑𝑎𝑡𝑎 (𝑥)]

                                                                    = arg max
𝜃

∫𝑃𝑑𝑎𝑡𝑎
𝑥

(𝑥) log 𝑃𝐺(𝑥; 𝜃)𝑑𝑥 − ∫𝑃𝑑𝑎𝑡𝑎(𝑥)log𝑃𝑑𝑎𝑡𝑎(𝑥)𝑑𝑥
𝑥

         = arg min
𝜃

𝐾𝐿(𝑃𝑑𝑎𝑡𝑎(𝑥)‖ 𝑃𝐺(𝑥; 𝜃)) (4)

 

in which 𝐾𝐿  denotes Kullback–Leibler divergence. The KL divergence measures how two probability 

distributions are different from each other (Kullback and Leibler, 1951). By minimizing the KL divergence, 

the generative model will reach the set of parameters of the best approximation of underlying data 

distribution.  

2.2. GAN-implementations of estimation 
Estimation of the data distribution is done by fitting a known parametrized distribution to an underlying 

intractable distribution. One of the most powerful tools in fitting nonlinear functions, a neural network, 

is used in GAN to implement such estimation. The generator and the discriminator in GAN adopt two 

independent neural networks with adversarial purposes: 

The generator neural network, denoted as G, is defined by 𝜃 in Eq.3. G takes random input 𝑧 from a 

predefined simple distribution like uniform and gaussian distribution 𝑃𝑧(𝑧) as input and represents a 

mapping to data space 𝐺(𝑧; 𝜃𝐺). The purpose of G is to yield synthesized data that cannot be detected by 

the discriminator. 

The discriminator neural network, denoted as D, is a discriminative model that outputs a single scalar 

𝐷(𝑥; 𝜃𝐷) trying to separate synthesized data from real data. The best set of parameters and purpose of D 

can be defined as 

𝜃𝐷
∗ = arg max

𝜃𝐷

( 𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝐷 (𝑥; 𝜃𝐷)] + 𝐸𝑧~𝑃𝑧

[log(1 − 𝐷 (𝐺(𝑧; 𝜃𝐺); 𝜃𝐷))]) (5) 
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As a summary, G and D play the following minimax game with value function 𝑉(𝐺, 𝐷): 

min
𝐺

max
𝐷

𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝐷 (𝑥; 𝜃𝐷)] + 𝐸𝑧~𝑃𝑧

[log(1 − 𝐷 (𝐺(𝑧; 𝜃𝐺); 𝜃𝐷))] (6) 

Given any generator G, the value function 𝑉(𝐺, 𝐷) can be reformulated as below: 

       𝑉(𝐺, 𝐷) = ∫𝑃𝑑𝑎𝑡𝑎
𝑥

(𝑥) log 𝐷 (𝑥; 𝜃𝐷)𝑑𝑥 − ∫𝑃𝑧(𝑧) log (1 − 𝐷 (𝐺(𝑧; 𝜃𝐺); 𝜃𝐷))𝑑𝑧
𝑧

= ∫𝑃𝑑𝑎𝑡𝑎
𝑥

(𝑥) log 𝐷 (𝑥; 𝜃𝐷) + 𝑃𝑔(𝑥) log(1 − 𝐷 (𝑥; 𝜃𝐷))𝑑𝑥 (7)
 

For any (𝑎, 𝑏) ∈ ℝ2 {0,0}, the function 𝑎 log(𝑦) + 𝑏 log(1 − 𝑦) achieves its maximum in [0,1] at 
𝑎

𝑎+𝑏
. 

Thus, the optimal discriminator D is given by the maximum of 𝑉(𝐺, 𝐷). 

𝐷∗
𝐺 =

𝑃𝑑𝑎𝑡𝑎(𝑥)

𝑃𝑑𝑎𝑡𝑎(𝑥) + 𝑃𝑔(𝑥)
(8) 

With Eq. 8 and the KL divergence, the value function with a fixed G Eq.7 could be written as: 

𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝐷∗

𝐺 (𝑥)] + 𝐸𝑧~𝑃𝑔
[log(1 − 𝐷∗

𝐺 (𝑥))]

                                         = 𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log

𝑃𝑑𝑎𝑡𝑎(𝑥)

𝑃𝑑𝑎𝑡𝑎(𝑥) + 𝑃𝑔(𝑥)
] + 𝐸𝑧~𝑃𝑔

[log
𝑃𝑑(𝑥)

𝑃𝑑𝑎𝑡𝑎(𝑥) + 𝑃𝑔(𝑥)
]

               = 𝐾𝐿[(𝑃𝑑𝑎𝑡𝑎‖(𝑃𝑑𝑎𝑡𝑎 + 𝑃𝑔)] + 𝐾𝐿[(𝑃𝑔‖(𝑃𝑑𝑎𝑡𝑎 + 𝑃𝑔)] (9)

 

Therefore, the value function of GAN is proven related to the KL divergence that measures the likelihood 

of two probabilistic distributions. Competition in this minimax game leads both the generator and 

discriminator to keep optimizing their methods. Finally, based on Sion’s minimax theorem (Sion, 1958) 

and the proof in Goodfellow et al. (2014), two players G and D will converge at the same point, where 

𝑃𝑔 = 𝑃𝑑𝑎𝑡𝑎 , then 𝐺(𝑧; 𝜃𝐺
∗) can be considered as the best estimation of 𝑃𝑑𝑎𝑡𝑎  and can be utilized to 

generate synthetic data. 

3. Common structure and training of GAN 

 

Figure 2: Typical GAN structure. 
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GAN is usually comprised of two core models, the generator and the discriminator. The generator takes 

random inputs and maps them into synthetic data with a differentiable function that can be trained by 

backpropagation. These random inputs are usually generated from a simple distribution like Gaussian 

distribution but can also be generated by certain rules in some variants of GAN for better estimation of 

the real data distribution or other purposes. The discriminator takes samples either from real data or from 

the generator and predicts a binary class label of real or synthetic. The results derived by the discriminator 

will be evaluated by ground truth and used for guiding optimization of the weaker model in the game. 

Detailed training procedures are described as:  

 

Figure 3a: The beginning of training a GAN. 

Step one: At the very beginning, the generator has been set up randomly and hence the synthetic can 

easily be distinguished by the discriminator. The optimizer of GAN will train the generator by the gradients 

of the value function (or loss function in machine learning). 

 

Figure 3b: After training the generator, the discriminator cannot decide which is fake. 
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Step two: Once the generator gets trained, the discriminator should be trained at least once. The reason 

for this procedure is a more optimized discriminator can provide a more accurate ratio between 2 

distributions (see Eq. 8) and hence produce better gradients to train the generator.  

 

Figure 3c: In the final stage of the training of GAN, both the generator and the discriminator cannot be further trained. 

Step three: Keep training with steps one and two, until the discriminator is maximumly confused and can 

not distinguish synthetic data from real data, which reflects in the prediction of 0.5 of any input sample 

either real or synthetic. Then the training is considered finished, and the synthetic data produced by the 

generator is lying in the distribution of real data. 

The training procedure for GAN is usually challenging and unstable due to several reasons (see Radford et 

al.,2015 and Salimans et al., 2016). Certain useful tricks and improvements in the training of GAN are used: 

1. Batch Normalization. Using a large batch of real or synthetic data after normalization for both the 

discriminator and generator will stabilize the training and speed up training. 

2. High learning rate and more steps on training the discriminator. As mentioned in the training 

procedure, focusing more on the discriminator will provide with better gradient for the whole 

network. 

3. Avoid hard boundaries. Deep neural nets are prone to producing highly confident outputs that 

identify the correct class but with too extreme of a probability (Goodfellow et al., 2016). 

Smoothing the boundaries of the activation functions by using leaky ReLU in the neural network 

(see Radford et al., 2015 for details) and using a one-side smoothed label (usually setting 0.9 

instead of 1 on positive samples) would help the discriminator more efficiently on distinguishing 

of synthetic data (Salimans et al., 2016). 

4. Variants of GAN 
Since the original structure of GAN proposed by Goodfellow et al. in 2014, a huge number of GAN variants 

have been created. These variants of GAN are innovative for their improvement of structures, extensions 

of theory, or specific application-oriented design. 

4.1. Wasserstein GAN 
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Instead of using KL divergence as the value function for optimization, Arjovsky et al. (2017) proposed 

Wasserstein GAN that uses the Earth-Mover distance for evaluating the distribution distance between 

real data and the synthetic data and uses a critic function supported by Lipschitz constraint to represent 

the discriminator. The advantage of using such Wasserstein distance is to stabilize the training of GAN by 

avoiding the gradient vanishing problem when the real data and synthetic data share very little overlap. 

4.2. Deep convolutional GAN 

The original structure of GAN uses multilayer perceptron (MLP) as the generator and discriminator. The 

limitation of MLP is all the data is treated the same and does not leverage the benefit of spatial structures 

as the convolutional neural network (CNN) does. Thus, CNN has way better performance at generating 

images than MLP. Deep convolutional GAN (DCGAN, Radford et al., 2016) substitutes the CNN for MLP in 

the original GAN and soon became the backbone of most of the variants of GAN. CNN structures in DCGAN 

utilize convolutional layers to capture features of data on different scales with convolutional kernels, the 

generator produces synthetic data with these features while the discriminator captures its own set of 

features that can be used to distinguish synthetic data from real ones. 

4.3. Conditional GAN and Info GAN 

 

Figure 4: Intuitive structure of Info GAN.  

The original GAN can only discover one data distribution and generate data in one estimated distribution. 

Conditional GAN (Mirza and Osindero, 2014) and Info GAN (Chen et al., 2016) add a “latent code” to the 

random noise input of GAN and adapt the generator and discriminator to this latent code in outputting 

class label of synthetic data. The value function of Info GAN is formulated as below: 

min
𝐺

max
𝐷

{𝑓𝐼(𝐷, 𝐺) = 𝑓(𝐷, 𝐺) − 𝜆𝐼(𝑐; 𝐺(𝑧, 𝑐))} (10) 

4.4. Super-resolution GAN 

Super-resolution GAN (Ledig et al., 2017) takes low-resolution images as input instead of random noise 

and generates realistic details of the images while up-sampling. To achieve photorealistic super-resolution, 

SRGAN utilizes a perceptual loss function (notes as value function above) which consists of an adversarial 

loss to make sure the image manifold and a content loss to assure the perceptual similarity between real 

data and synthetic data other than simply pixel similarity. SRGAN uses ResNet (see He et al., 2016 for 
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details) in the generator, which is noted for its residual block that adds former output with its own output, 

called skip connection. ResNet in SRGAN is easier than training a CNN for capturing features and allows 

SRGAN to be substantially deeper to generate better results.  

5. Conclusions 
In this paper, we elaborate on the theoretical foundations, algorithm implementations, training 

procedures with useful tricks, and common variants of GAN. GAN is an implicit generative model that 

utilizes two neural networks in competition to generate synthetic data fitted in the underlying distribution 

of real data. The ability of GAN to generate infinite synthetic data from limited real data has great 

application values and potential in the geoscience domain. 
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