

Annual Report 2022
Paper 2022-09

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 132

Generative Adversarial Network 1011
Tong Li (tong.li@queensu.ca)

Julian M Ortiz (julian.ortiz@queensu.ca)

Abstract
Generative Adversarial Network, known as GAN, is one of the most promising
architectures of generative models based on deep learning. The main purpose of the
generative models is to generate synthesized data from the summarized distribution
of given data. Therefore, finding the explicit or implicit approximation of the underlying
real distribution of known data contributes the most to the ability of the generative
models. With recent advances in deep learning algorithms, the impressive performance
in recognizing the pattern of data further enhanced GAN’s ability to synthesize data
that fits in the distribution of real data. Such ability has great potential in the geoscience
domain, in which the cost of new data is expensive. In this brief article, GAN, as a deep
learning-based generative model within an adversarial framework, is introduced along
with theoretical foundations, training procedures, and some variant structures of GAN.

1. Introduction
As we are going into the era of data, data science with deep learning algorithms are making striking

achievements in lots of domains and changing our life. These data-driven methods have great abilities in

discovering underlying hierarchical models that represent probability distributions over offered data

(Bengio, 2009). The promise of such strong ability comes from a huge amount of input data training

millions of parameters in these deep learning algorithms. In real applications like mining domains, data

acquisition could be expensive and time-consuming. Researchers attempt to sidestep more data

acquisitions by augmentations of known data, including translation, rotation, and flip (Krizhevsky et al.,

2012). The diversity of data obtained by these minor modifications of data is relatively small. This

motivates the utilization of generative models to produce synthetic data with more variability. Generative

models approximate the real underlying probability distribution of input data and yield synthetic data

within the best estimation of data distribution. However, difficulties in approximating many intractable

probabilistic computations that caused by maximum likelihood estimation and related strategies hinder

the performance of generative models (Goodfellow et al., 2014).

Generative Adversarial Network, as in its name, is a generative model trained in an adversarial net

framework. GAN is normally composed of two networks, the discriminator and the generator. The

discriminator is a classifier that tries to determine a sample more likely from real data distribution or GAN-

modeled distribution and to separate synthetic data from real data. The generator learns to create

synthetic data by incorporating feedback from the discriminator and tries to have a better estimation of

the real data distribution to produce more realistic synthetic data. The basic principle of GAN is inspired

by a two-player zero-sum game, in which each gain of utility is exactly the loss of the other player. The

1 Cite as: Li T, Ortiz JM (2022) Generative Adversarial Network 101, Predictive Geometallurgy and Geostatistics Lab,
Queen’s University, Annual Report 2022, paper 2022-09, 132-140.

mailto:tong.li@queensu.ca
mailto:julian.ortiz@queensu.ca

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 133

competition between the discriminator and the generator promotes them to get trained and improve

their methods until no one could ever win the game. When the competition terminates at an equilibrium

point of the discriminator and the generator, which is called Nash equilibrium in game theory (Ratliff et

al., 2013), GAN can be considered to have captured its best approximation of the distribution of offered

data and hence can generate new data within that modeled distribution. Theoretically, any differentiable

function that maps data from one space to another can be used as the discriminator and the generator.

GAN is initially implemented by multilayer perceptrons and commonly by variants of neural networks

nowadays.

In the following sections, we will introduce some theoretical foundations of GAN, GAN implementations

of these foundations, the structure and training procedures of GAN, and we will end with a brief review

of variants of GAN.

2. Theoretical Foundation of GAN

2.1. Estimation on distribution
Generative models aim to discover the underlying distribution 𝑃𝑑𝑎𝑡𝑎(𝑥) of offered data (also called

probability density function) which is composed by samples {𝑥1, 𝑥2, … , 𝑥𝑛}. In real practice, 𝑃𝑑𝑎𝑡𝑎(𝑥) is

usually unknown and extremely intricate. The goal of generative models is to find the best approximation

of 𝑃𝑑𝑎𝑡𝑎(𝑥), which can be defined by a set of parameters 𝜃, denoted as 𝑃𝐺(𝑥; 𝜃). By the way of finding

the best approximation of 𝑃𝑑𝑎𝑡𝑎(𝑥), generative models can be classified into two classes: explicit density

model and implicit density model. An explicit density model assumes the distribution and utilizes true

data to train the model containing the distribution or fit the distribution parameters. An implicit density

model produces synthetic data without an explicit distribution and uses produced data to modify the

model.

Figure 1: Illustration of estimation (orange) of real probabilities distribution (green) based on samples (Dumoulin et al., 2017).

To figure out how generative models find the best approximation of 𝑃𝑑𝑎𝑡𝑎 utilizing a limited amount of

real data, maximum likelihood estimation, as a representative of generative models, is illustrated. The

likelihood function (Eq.1) is defined by the joint probability between real samples and the approximation

distribution, which is used for the estimation.

𝐿 = ∏ 𝑃𝐺(𝑥𝑖;
𝑛

𝑖=1
𝜃) (1)

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 134

To maximize the likelihood function, the best set of parameters 𝜃∗ is calculated as:

𝜃∗ = arg max
𝜃

𝐿 (2)

The natural logarithm of the likelihood function is often used for calculation convenience. Since the

logarithm is monotonic, the maximum of both functions occurs at the same value of 𝜃.

𝜃∗ = arg max
𝜃

ln ∏ 𝑃𝐺(𝑥𝑖;
𝑛

𝑖=1
𝜃)

 = arg max
𝜃

∑ 𝑙𝑛

𝑛

𝑖=1

𝑃𝐺(𝑥𝑖; 𝜃)

 ≈ arg max
𝜃

𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝑃𝐺 (𝑥; 𝜃)] (3)

Eq. 3 is the main indicator for training both the generator and the discriminator in GAN, as well as where

the adversary happens, which is going to be introduced in the next section.

If we go further on Eq. 3, minus it with the probability distribution of real samples in their own distribution,

which is independent of 𝜃, as

𝜃∗ ≈ arg max
𝜃

𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝑃𝐺 (𝑥; 𝜃)]

 = arg max
𝜃

𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝑃𝐺 (𝑥; 𝜃)] − 𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎

[log 𝑃𝑑𝑎𝑡𝑎 (𝑥)]

 = arg max
𝜃

∫𝑃𝑑𝑎𝑡𝑎
𝑥

(𝑥) log 𝑃𝐺(𝑥; 𝜃)𝑑𝑥 − ∫𝑃𝑑𝑎𝑡𝑎(𝑥)log𝑃𝑑𝑎𝑡𝑎(𝑥)𝑑𝑥
𝑥

 = arg min
𝜃

𝐾𝐿(𝑃𝑑𝑎𝑡𝑎(𝑥)‖ 𝑃𝐺(𝑥; 𝜃)) (4)

in which 𝐾𝐿 denotes Kullback–Leibler divergence. The KL divergence measures how two probability

distributions are different from each other (Kullback and Leibler, 1951). By minimizing the KL divergence,

the generative model will reach the set of parameters of the best approximation of underlying data

distribution.

2.2. GAN-implementations of estimation
Estimation of the data distribution is done by fitting a known parametrized distribution to an underlying

intractable distribution. One of the most powerful tools in fitting nonlinear functions, a neural network,

is used in GAN to implement such estimation. The generator and the discriminator in GAN adopt two

independent neural networks with adversarial purposes:

The generator neural network, denoted as G, is defined by 𝜃 in Eq.3. G takes random input 𝑧 from a

predefined simple distribution like uniform and gaussian distribution 𝑃𝑧(𝑧) as input and represents a

mapping to data space 𝐺(𝑧; 𝜃𝐺). The purpose of G is to yield synthesized data that cannot be detected by

the discriminator.

The discriminator neural network, denoted as D, is a discriminative model that outputs a single scalar

𝐷(𝑥; 𝜃𝐷) trying to separate synthesized data from real data. The best set of parameters and purpose of D

can be defined as

𝜃𝐷
∗ = arg max

𝜃𝐷

(𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝐷 (𝑥; 𝜃𝐷)] + 𝐸𝑧~𝑃𝑧

[log(1 − 𝐷 (𝐺(𝑧; 𝜃𝐺); 𝜃𝐷))]) (5)

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 135

As a summary, G and D play the following minimax game with value function 𝑉(𝐺, 𝐷):

min
𝐺

max
𝐷

𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝐷 (𝑥; 𝜃𝐷)] + 𝐸𝑧~𝑃𝑧

[log(1 − 𝐷 (𝐺(𝑧; 𝜃𝐺); 𝜃𝐷))] (6)

Given any generator G, the value function 𝑉(𝐺, 𝐷) can be reformulated as below:

 𝑉(𝐺, 𝐷) = ∫𝑃𝑑𝑎𝑡𝑎
𝑥

(𝑥) log 𝐷 (𝑥; 𝜃𝐷)𝑑𝑥 − ∫𝑃𝑧(𝑧) log (1 − 𝐷 (𝐺(𝑧; 𝜃𝐺); 𝜃𝐷))𝑑𝑧
𝑧

= ∫𝑃𝑑𝑎𝑡𝑎
𝑥

(𝑥) log 𝐷 (𝑥; 𝜃𝐷) + 𝑃𝑔(𝑥) log(1 − 𝐷 (𝑥; 𝜃𝐷))𝑑𝑥 (7)

For any (𝑎, 𝑏) ∈ ℝ2 {0,0}, the function 𝑎 log(𝑦) + 𝑏 log(1 − 𝑦) achieves its maximum in [0,1] at
𝑎

𝑎+𝑏
.

Thus, the optimal discriminator D is given by the maximum of 𝑉(𝐺, 𝐷).

𝐷∗
𝐺 =

𝑃𝑑𝑎𝑡𝑎(𝑥)

𝑃𝑑𝑎𝑡𝑎(𝑥) + 𝑃𝑔(𝑥)
(8)

With Eq. 8 and the KL divergence, the value function with a fixed G Eq.7 could be written as:

𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝐷∗

𝐺 (𝑥)] + 𝐸𝑧~𝑃𝑔
[log(1 − 𝐷∗

𝐺 (𝑥))]

 = 𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log

𝑃𝑑𝑎𝑡𝑎(𝑥)

𝑃𝑑𝑎𝑡𝑎(𝑥) + 𝑃𝑔(𝑥)
] + 𝐸𝑧~𝑃𝑔

[log
𝑃𝑑(𝑥)

𝑃𝑑𝑎𝑡𝑎(𝑥) + 𝑃𝑔(𝑥)
]

 = 𝐾𝐿[(𝑃𝑑𝑎𝑡𝑎‖(𝑃𝑑𝑎𝑡𝑎 + 𝑃𝑔)] + 𝐾𝐿[(𝑃𝑔‖(𝑃𝑑𝑎𝑡𝑎 + 𝑃𝑔)] (9)

Therefore, the value function of GAN is proven related to the KL divergence that measures the likelihood

of two probabilistic distributions. Competition in this minimax game leads both the generator and

discriminator to keep optimizing their methods. Finally, based on Sion’s minimax theorem (Sion, 1958)

and the proof in Goodfellow et al. (2014), two players G and D will converge at the same point, where

𝑃𝑔 = 𝑃𝑑𝑎𝑡𝑎 , then 𝐺(𝑧; 𝜃𝐺
∗) can be considered as the best estimation of 𝑃𝑑𝑎𝑡𝑎 and can be utilized to

generate synthetic data.

3. Common structure and training of GAN

Figure 2: Typical GAN structure.

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 136

GAN is usually comprised of two core models, the generator and the discriminator. The generator takes

random inputs and maps them into synthetic data with a differentiable function that can be trained by

backpropagation. These random inputs are usually generated from a simple distribution like Gaussian

distribution but can also be generated by certain rules in some variants of GAN for better estimation of

the real data distribution or other purposes. The discriminator takes samples either from real data or from

the generator and predicts a binary class label of real or synthetic. The results derived by the discriminator

will be evaluated by ground truth and used for guiding optimization of the weaker model in the game.

Detailed training procedures are described as:

Figure 3a: The beginning of training a GAN.

Step one: At the very beginning, the generator has been set up randomly and hence the synthetic can

easily be distinguished by the discriminator. The optimizer of GAN will train the generator by the gradients

of the value function (or loss function in machine learning).

Figure 3b: After training the generator, the discriminator cannot decide which is fake.

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 137

Step two: Once the generator gets trained, the discriminator should be trained at least once. The reason

for this procedure is a more optimized discriminator can provide a more accurate ratio between 2

distributions (see Eq. 8) and hence produce better gradients to train the generator.

Figure 3c: In the final stage of the training of GAN, both the generator and the discriminator cannot be further trained.

Step three: Keep training with steps one and two, until the discriminator is maximumly confused and can

not distinguish synthetic data from real data, which reflects in the prediction of 0.5 of any input sample

either real or synthetic. Then the training is considered finished, and the synthetic data produced by the

generator is lying in the distribution of real data.

The training procedure for GAN is usually challenging and unstable due to several reasons (see Radford et

al.,2015 and Salimans et al., 2016). Certain useful tricks and improvements in the training of GAN are used:

1. Batch Normalization. Using a large batch of real or synthetic data after normalization for both the

discriminator and generator will stabilize the training and speed up training.

2. High learning rate and more steps on training the discriminator. As mentioned in the training

procedure, focusing more on the discriminator will provide with better gradient for the whole

network.

3. Avoid hard boundaries. Deep neural nets are prone to producing highly confident outputs that

identify the correct class but with too extreme of a probability (Goodfellow et al., 2016).

Smoothing the boundaries of the activation functions by using leaky ReLU in the neural network

(see Radford et al., 2015 for details) and using a one-side smoothed label (usually setting 0.9

instead of 1 on positive samples) would help the discriminator more efficiently on distinguishing

of synthetic data (Salimans et al., 2016).

4. Variants of GAN
Since the original structure of GAN proposed by Goodfellow et al. in 2014, a huge number of GAN variants

have been created. These variants of GAN are innovative for their improvement of structures, extensions

of theory, or specific application-oriented design.

4.1. Wasserstein GAN

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 138

Instead of using KL divergence as the value function for optimization, Arjovsky et al. (2017) proposed

Wasserstein GAN that uses the Earth-Mover distance for evaluating the distribution distance between

real data and the synthetic data and uses a critic function supported by Lipschitz constraint to represent

the discriminator. The advantage of using such Wasserstein distance is to stabilize the training of GAN by

avoiding the gradient vanishing problem when the real data and synthetic data share very little overlap.

4.2. Deep convolutional GAN

The original structure of GAN uses multilayer perceptron (MLP) as the generator and discriminator. The

limitation of MLP is all the data is treated the same and does not leverage the benefit of spatial structures

as the convolutional neural network (CNN) does. Thus, CNN has way better performance at generating

images than MLP. Deep convolutional GAN (DCGAN, Radford et al., 2016) substitutes the CNN for MLP in

the original GAN and soon became the backbone of most of the variants of GAN. CNN structures in DCGAN

utilize convolutional layers to capture features of data on different scales with convolutional kernels, the

generator produces synthetic data with these features while the discriminator captures its own set of

features that can be used to distinguish synthetic data from real ones.

4.3. Conditional GAN and Info GAN

Figure 4: Intuitive structure of Info GAN.

The original GAN can only discover one data distribution and generate data in one estimated distribution.

Conditional GAN (Mirza and Osindero, 2014) and Info GAN (Chen et al., 2016) add a “latent code” to the

random noise input of GAN and adapt the generator and discriminator to this latent code in outputting

class label of synthetic data. The value function of Info GAN is formulated as below:

min
𝐺

max
𝐷

{𝑓𝐼(𝐷, 𝐺) = 𝑓(𝐷, 𝐺) − 𝜆𝐼(𝑐; 𝐺(𝑧, 𝑐))} (10)

4.4. Super-resolution GAN

Super-resolution GAN (Ledig et al., 2017) takes low-resolution images as input instead of random noise

and generates realistic details of the images while up-sampling. To achieve photorealistic super-resolution,

SRGAN utilizes a perceptual loss function (notes as value function above) which consists of an adversarial

loss to make sure the image manifold and a content loss to assure the perceptual similarity between real

data and synthetic data other than simply pixel similarity. SRGAN uses ResNet (see He et al., 2016 for

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 139

details) in the generator, which is noted for its residual block that adds former output with its own output,

called skip connection. ResNet in SRGAN is easier than training a CNN for capturing features and allows

SRGAN to be substantially deeper to generate better results.

5. Conclusions
In this paper, we elaborate on the theoretical foundations, algorithm implementations, training

procedures with useful tricks, and common variants of GAN. GAN is an implicit generative model that

utilizes two neural networks in competition to generate synthetic data fitted in the underlying distribution

of real data. The ability of GAN to generate infinite synthetic data from limited real data has great

application values and potential in the geoscience domain.

6. Acknowledgments
We acknowledge the support of the National Natural Science Foundation of China (No. 42172326).

7. References
Arjovsky M, Chintala S, Bottou L (2017, July) Wasserstein generative adversarial networks. In International

conference on machine learning (pp. 214-223). PMLR.

Bengio Y (2009) Learning deep architectures for AI. Foundations and trends® in Machine Learning, 2(1),

1-127.

Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P (2016) Infogan: Interpretable

representation learning by information maximizing generative adversarial nets. Advances in neural

information processing systems, 29.

Goodfellow I (2016) Nips 2016 tutorial: Generative adversarial networks. arXiv preprint arXiv:1701.00160.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Bengio Y (2020) Generative

adversarial networks. Communications of the ACM, 63(11), 139-144.

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In Proceedings of the

IEEE conference on computer vision and pattern recognition (pp. 770-778).

Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural

networks. Communications of the ACM, 60(6), 84-90.

Kullback S, Leibler RA (1951) On information and sufficiency. The annals of mathematical statistics, 22(1),

79-86.

Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Shi W (2017) Photo-realistic single

image super-resolution using a generative adversarial network. In Proceedings of the IEEE conference

on computer vision and pattern recognition (pp. 4681-4690).

Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784.

Radford A, Metz L, Chintala S (2015) Unsupervised representation learning with deep convolutional

generative adversarial networks. arXiv preprint arXiv:1511.06434.

Ratliff LJ, Burden SA, Sastry SS (2013) Characterization and computation of local nash equilibria in

continuous games. In Communication, Control, and Computing (Allerton), 2013 51st Annual Allerton

Conference on, pages 917–924. IEEE.

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 140

Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X (2016) Improved techniques for

training gans. In Advances in Neural Information Processing Systems, pages 2226–2234.

Sion M (1958) On general minimax theorems. Pacific Journal of mathematics, 8(1), 171-176.

