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Abstract 
Generative Adversarial Network, known as GAN, is one of the most promising 
architectures of generative models based on deep learning. The main purpose of the 
generative models is to generate synthesized data from the summarized distribution 
of given data. Therefore, finding the explicit or implicit approximation of the underlying 
real distribution of known data contributes the most to the ability of the generative 
models. With recent advances in deep learning algorithms, the impressive performance 
in recognizing the pattern of data further enhanced GAN’s ability to synthesize data 
that fits in the distribution of real data. Such ability has great potential in the geoscience 
domain, in which the cost of new data is expensive. In this brief article, GAN, as a deep 
learning-based generative model within an adversarial framework, is introduced along 
with theoretical foundations, training procedures, and some variant structures of GAN.  

 

1. Introduction 
As we are going into the era of data, data science with deep learning algorithms are making striking 

achievements in lots of domains and changing our life. These data-driven methods have great abilities in 

discovering underlying hierarchical models that represent probability distributions over offered data 

(Bengio, 2009). The promise of such strong ability comes from a huge amount of input data training 

millions of parameters in these deep learning algorithms. In real applications like mining domains, data 

acquisition could be expensive and time-consuming. Researchers attempt to sidestep more data 

acquisitions by augmentations of known data, including translation, rotation, and flip (Krizhevsky et al., 

2012). The diversity of data obtained by these minor modifications of data is relatively small. This 

motivates the utilization of generative models to produce synthetic data with more variability. Generative 

models approximate the real underlying probability distribution of input data and yield synthetic data 

within the best estimation of data distribution. However, difficulties in approximating many intractable 

probabilistic computations that caused by maximum likelihood estimation and related strategies hinder 

the performance of generative models (Goodfellow et al., 2014).  

Generative Adversarial Network, as in its name, is a generative model trained in an adversarial net 

framework. GAN is normally composed of two networks, the discriminator and the generator. The 

discriminator is a classifier that tries to determine a sample more likely from real data distribution or GAN-

modeled distribution and to separate synthetic data from real data. The generator learns to create 

synthetic data by incorporating feedback from the discriminator and tries to have a better estimation of 

the real data distribution to produce more realistic synthetic data. The basic principle of GAN is inspired 

by a two-player zero-sum game, in which each gain of utility is exactly the loss of the other player. The 
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competition between the discriminator and the generator promotes them to get trained and improve 

their methods until no one could ever win the game. When the competition terminates at an equilibrium 

point of the discriminator and the generator, which is called Nash equilibrium in game theory (Ratliff et 

al., 2013), GAN can be considered to have captured its best approximation of the distribution of offered 

data and hence can generate new data within that modeled distribution. Theoretically, any differentiable 

function that maps data from one space to another can be used as the discriminator and the generator. 

GAN is initially implemented by multilayer perceptrons and commonly by variants of neural networks 

nowadays. 

In the following sections, we will introduce some theoretical foundations of GAN, GAN implementations 

of these foundations, the structure and training procedures of GAN, and we will end with a brief review 

of variants of GAN. 

2. Theoretical Foundation of GAN 

2.1. Estimation on distribution 
Generative models aim to discover the underlying distribution 𝑃𝑑𝑎𝑡𝑎(𝑥)  of offered data (also called 

probability density function) which is composed by samples {𝑥1, 𝑥2, … , 𝑥𝑛}. In real practice, 𝑃𝑑𝑎𝑡𝑎(𝑥) is 

usually unknown and extremely intricate. The goal of generative models is to find the best approximation 

of 𝑃𝑑𝑎𝑡𝑎(𝑥), which can be defined by a set of parameters 𝜃, denoted as 𝑃𝐺(𝑥; 𝜃). By the way of finding 

the best approximation of 𝑃𝑑𝑎𝑡𝑎(𝑥), generative models can be classified into two classes: explicit density 

model and implicit density model. An explicit density model assumes the distribution and utilizes true 

data to train the model containing the distribution or fit the distribution parameters. An implicit density 

model produces synthetic data without an explicit distribution and uses produced data to modify the 

model.  

 

Figure 1: Illustration of estimation (orange) of real probabilities distribution (green) based on samples (Dumoulin et al., 2017). 

To figure out how generative models find the best approximation of 𝑃𝑑𝑎𝑡𝑎 utilizing a limited amount of 

real data, maximum likelihood estimation, as a representative of generative models, is illustrated. The 

likelihood function (Eq.1) is defined by the joint probability between real samples and the approximation 

distribution, which is used for the estimation. 

𝐿 = ∏ 𝑃𝐺(𝑥𝑖;
𝑛

𝑖=1
𝜃) (1) 
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To maximize the likelihood function, the best set of parameters 𝜃∗ is calculated as: 

𝜃∗ = arg max
𝜃

𝐿 (2) 

The natural logarithm of the likelihood function is often used for calculation convenience. Since the 

logarithm is monotonic, the maximum of both functions occurs at the same value of 𝜃. 

𝜃∗ = arg max
𝜃

ln ∏ 𝑃𝐺(𝑥𝑖;
𝑛

𝑖=1
𝜃)

 = arg max
𝜃

∑ 𝑙𝑛

𝑛

𝑖=1

𝑃𝐺(𝑥𝑖; 𝜃)

               ≈ arg max
𝜃

𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝑃𝐺 (𝑥; 𝜃)] (3)

 

Eq. 3 is the main indicator for training both the generator and the discriminator in GAN, as well as where 

the adversary happens, which is going to be introduced in the next section. 

If we go further on Eq. 3, minus it with the probability distribution of real samples in their own distribution, 

which is independent of 𝜃, as 

𝜃∗ ≈ arg max
𝜃

𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝑃𝐺 (𝑥; 𝜃)]

                                                        = arg max
𝜃

𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝑃𝐺 (𝑥; 𝜃)] − 𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎

[log 𝑃𝑑𝑎𝑡𝑎 (𝑥)]

                                                                    = arg max
𝜃

∫𝑃𝑑𝑎𝑡𝑎
𝑥

(𝑥) log 𝑃𝐺(𝑥; 𝜃)𝑑𝑥 − ∫𝑃𝑑𝑎𝑡𝑎(𝑥)log𝑃𝑑𝑎𝑡𝑎(𝑥)𝑑𝑥
𝑥

         = arg min
𝜃

𝐾𝐿(𝑃𝑑𝑎𝑡𝑎(𝑥)‖ 𝑃𝐺(𝑥; 𝜃)) (4)

 

in which 𝐾𝐿  denotes Kullback–Leibler divergence. The KL divergence measures how two probability 

distributions are different from each other (Kullback and Leibler, 1951). By minimizing the KL divergence, 

the generative model will reach the set of parameters of the best approximation of underlying data 

distribution.  

2.2. GAN-implementations of estimation 
Estimation of the data distribution is done by fitting a known parametrized distribution to an underlying 

intractable distribution. One of the most powerful tools in fitting nonlinear functions, a neural network, 

is used in GAN to implement such estimation. The generator and the discriminator in GAN adopt two 

independent neural networks with adversarial purposes: 

The generator neural network, denoted as G, is defined by 𝜃 in Eq.3. G takes random input 𝑧 from a 

predefined simple distribution like uniform and gaussian distribution 𝑃𝑧(𝑧) as input and represents a 

mapping to data space 𝐺(𝑧; 𝜃𝐺). The purpose of G is to yield synthesized data that cannot be detected by 

the discriminator. 

The discriminator neural network, denoted as D, is a discriminative model that outputs a single scalar 

𝐷(𝑥; 𝜃𝐷) trying to separate synthesized data from real data. The best set of parameters and purpose of D 

can be defined as 

𝜃𝐷
∗ = arg max

𝜃𝐷

( 𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝐷 (𝑥; 𝜃𝐷)] + 𝐸𝑧~𝑃𝑧

[log(1 − 𝐷 (𝐺(𝑧; 𝜃𝐺); 𝜃𝐷))]) (5) 
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As a summary, G and D play the following minimax game with value function 𝑉(𝐺, 𝐷): 

min
𝐺

max
𝐷

𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝐷 (𝑥; 𝜃𝐷)] + 𝐸𝑧~𝑃𝑧

[log(1 − 𝐷 (𝐺(𝑧; 𝜃𝐺); 𝜃𝐷))] (6) 

Given any generator G, the value function 𝑉(𝐺, 𝐷) can be reformulated as below: 

       𝑉(𝐺, 𝐷) = ∫𝑃𝑑𝑎𝑡𝑎
𝑥

(𝑥) log 𝐷 (𝑥; 𝜃𝐷)𝑑𝑥 − ∫𝑃𝑧(𝑧) log (1 − 𝐷 (𝐺(𝑧; 𝜃𝐺); 𝜃𝐷))𝑑𝑧
𝑧

= ∫𝑃𝑑𝑎𝑡𝑎
𝑥

(𝑥) log 𝐷 (𝑥; 𝜃𝐷) + 𝑃𝑔(𝑥) log(1 − 𝐷 (𝑥; 𝜃𝐷))𝑑𝑥 (7)
 

For any (𝑎, 𝑏) ∈ ℝ2 {0,0}, the function 𝑎 log(𝑦) + 𝑏 log(1 − 𝑦) achieves its maximum in [0,1] at 
𝑎

𝑎+𝑏
. 

Thus, the optimal discriminator D is given by the maximum of 𝑉(𝐺, 𝐷). 

𝐷∗
𝐺 =

𝑃𝑑𝑎𝑡𝑎(𝑥)

𝑃𝑑𝑎𝑡𝑎(𝑥) + 𝑃𝑔(𝑥)
(8) 

With Eq. 8 and the KL divergence, the value function with a fixed G Eq.7 could be written as: 

𝑉(𝐺, 𝐷) = 𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log 𝐷∗

𝐺 (𝑥)] + 𝐸𝑧~𝑃𝑔
[log(1 − 𝐷∗

𝐺 (𝑥))]

                                         = 𝐸𝑥~𝑃ⅆ𝑎𝑡𝑎
[log

𝑃𝑑𝑎𝑡𝑎(𝑥)

𝑃𝑑𝑎𝑡𝑎(𝑥) + 𝑃𝑔(𝑥)
] + 𝐸𝑧~𝑃𝑔

[log
𝑃𝑑(𝑥)

𝑃𝑑𝑎𝑡𝑎(𝑥) + 𝑃𝑔(𝑥)
]

               = 𝐾𝐿[(𝑃𝑑𝑎𝑡𝑎‖(𝑃𝑑𝑎𝑡𝑎 + 𝑃𝑔)] + 𝐾𝐿[(𝑃𝑔‖(𝑃𝑑𝑎𝑡𝑎 + 𝑃𝑔)] (9)

 

Therefore, the value function of GAN is proven related to the KL divergence that measures the likelihood 

of two probabilistic distributions. Competition in this minimax game leads both the generator and 

discriminator to keep optimizing their methods. Finally, based on Sion’s minimax theorem (Sion, 1958) 

and the proof in Goodfellow et al. (2014), two players G and D will converge at the same point, where 

𝑃𝑔 = 𝑃𝑑𝑎𝑡𝑎 , then 𝐺(𝑧; 𝜃𝐺
∗) can be considered as the best estimation of 𝑃𝑑𝑎𝑡𝑎  and can be utilized to 

generate synthetic data. 

3. Common structure and training of GAN 

 

Figure 2: Typical GAN structure. 
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GAN is usually comprised of two core models, the generator and the discriminator. The generator takes 

random inputs and maps them into synthetic data with a differentiable function that can be trained by 

backpropagation. These random inputs are usually generated from a simple distribution like Gaussian 

distribution but can also be generated by certain rules in some variants of GAN for better estimation of 

the real data distribution or other purposes. The discriminator takes samples either from real data or from 

the generator and predicts a binary class label of real or synthetic. The results derived by the discriminator 

will be evaluated by ground truth and used for guiding optimization of the weaker model in the game. 

Detailed training procedures are described as:  

 

Figure 3a: The beginning of training a GAN. 

Step one: At the very beginning, the generator has been set up randomly and hence the synthetic can 

easily be distinguished by the discriminator. The optimizer of GAN will train the generator by the gradients 

of the value function (or loss function in machine learning). 

 

Figure 3b: After training the generator, the discriminator cannot decide which is fake. 
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Step two: Once the generator gets trained, the discriminator should be trained at least once. The reason 

for this procedure is a more optimized discriminator can provide a more accurate ratio between 2 

distributions (see Eq. 8) and hence produce better gradients to train the generator.  

 

Figure 3c: In the final stage of the training of GAN, both the generator and the discriminator cannot be further trained. 

Step three: Keep training with steps one and two, until the discriminator is maximumly confused and can 

not distinguish synthetic data from real data, which reflects in the prediction of 0.5 of any input sample 

either real or synthetic. Then the training is considered finished, and the synthetic data produced by the 

generator is lying in the distribution of real data. 

The training procedure for GAN is usually challenging and unstable due to several reasons (see Radford et 

al.,2015 and Salimans et al., 2016). Certain useful tricks and improvements in the training of GAN are used: 

1. Batch Normalization. Using a large batch of real or synthetic data after normalization for both the 

discriminator and generator will stabilize the training and speed up training. 

2. High learning rate and more steps on training the discriminator. As mentioned in the training 

procedure, focusing more on the discriminator will provide with better gradient for the whole 

network. 

3. Avoid hard boundaries. Deep neural nets are prone to producing highly confident outputs that 

identify the correct class but with too extreme of a probability (Goodfellow et al., 2016). 

Smoothing the boundaries of the activation functions by using leaky ReLU in the neural network 

(see Radford et al., 2015 for details) and using a one-side smoothed label (usually setting 0.9 

instead of 1 on positive samples) would help the discriminator more efficiently on distinguishing 

of synthetic data (Salimans et al., 2016). 

4. Variants of GAN 
Since the original structure of GAN proposed by Goodfellow et al. in 2014, a huge number of GAN variants 

have been created. These variants of GAN are innovative for their improvement of structures, extensions 

of theory, or specific application-oriented design. 

4.1. Wasserstein GAN 
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Instead of using KL divergence as the value function for optimization, Arjovsky et al. (2017) proposed 

Wasserstein GAN that uses the Earth-Mover distance for evaluating the distribution distance between 

real data and the synthetic data and uses a critic function supported by Lipschitz constraint to represent 

the discriminator. The advantage of using such Wasserstein distance is to stabilize the training of GAN by 

avoiding the gradient vanishing problem when the real data and synthetic data share very little overlap. 

4.2. Deep convolutional GAN 

The original structure of GAN uses multilayer perceptron (MLP) as the generator and discriminator. The 

limitation of MLP is all the data is treated the same and does not leverage the benefit of spatial structures 

as the convolutional neural network (CNN) does. Thus, CNN has way better performance at generating 

images than MLP. Deep convolutional GAN (DCGAN, Radford et al., 2016) substitutes the CNN for MLP in 

the original GAN and soon became the backbone of most of the variants of GAN. CNN structures in DCGAN 

utilize convolutional layers to capture features of data on different scales with convolutional kernels, the 

generator produces synthetic data with these features while the discriminator captures its own set of 

features that can be used to distinguish synthetic data from real ones. 

4.3. Conditional GAN and Info GAN 

 

Figure 4: Intuitive structure of Info GAN.  

The original GAN can only discover one data distribution and generate data in one estimated distribution. 

Conditional GAN (Mirza and Osindero, 2014) and Info GAN (Chen et al., 2016) add a “latent code” to the 

random noise input of GAN and adapt the generator and discriminator to this latent code in outputting 

class label of synthetic data. The value function of Info GAN is formulated as below: 

min
𝐺

max
𝐷

{𝑓𝐼(𝐷, 𝐺) = 𝑓(𝐷, 𝐺) − 𝜆𝐼(𝑐; 𝐺(𝑧, 𝑐))} (10) 

4.4. Super-resolution GAN 

Super-resolution GAN (Ledig et al., 2017) takes low-resolution images as input instead of random noise 

and generates realistic details of the images while up-sampling. To achieve photorealistic super-resolution, 

SRGAN utilizes a perceptual loss function (notes as value function above) which consists of an adversarial 

loss to make sure the image manifold and a content loss to assure the perceptual similarity between real 

data and synthetic data other than simply pixel similarity. SRGAN uses ResNet (see He et al., 2016 for 
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details) in the generator, which is noted for its residual block that adds former output with its own output, 

called skip connection. ResNet in SRGAN is easier than training a CNN for capturing features and allows 

SRGAN to be substantially deeper to generate better results.  

5. Conclusions 
In this paper, we elaborate on the theoretical foundations, algorithm implementations, training 

procedures with useful tricks, and common variants of GAN. GAN is an implicit generative model that 

utilizes two neural networks in competition to generate synthetic data fitted in the underlying distribution 

of real data. The ability of GAN to generate infinite synthetic data from limited real data has great 

application values and potential in the geoscience domain. 
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