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Abstract 
Geochemical data plays an important role in supporting mineral deposits explorations 
in various ways. With the growth of deep learning methods utilized in mineral 
explorations, the demand for more geochemical data with more granularity keeps 
increasing. In contrast, the acquisition of geochemical data is usually expensive and 
time-consuming. In this work, we attempt to apply the spatial multivariate morphing 
transformation on geochemical data for data augmentation.  This method decorrelates 
geochemical data both spatially and statistically by mapping the data into a multi-
Gaussian space. Results show that this method is effective on geochemical data, but 
there are still problems that might be caused by the low stationarity and high 
dimensionality of geochemical data. 

 

1. Introduction 
Geochemical data is one of the most critical data that are used in mineral deposit exploration, especially 

in regional prospectivity mappings. Using geochemical data can provide vital information for discovering 

unknown mineral deposits like the spatial association of geochemical patterns, inter-elemental 

relationships, and geochemical anomalies that are caused by mineralization (Zuo and Xiong, 2020). 

Various methods had been adopted to process geochemical data to extract mineralization information. 

Among them, deep learning methods show a strong ability to intelligently find hidden patterns and 

features in geochemical data. The promise of such ability comes from large amounts of training data, and 

existing geochemical data usually cannot meet the demands and need augmentation. Traditional data 

augmentation methods designed on image data could result in severe problems when applied to 

geochemical data, like creating patterns in the wrong direction or adjusting all elements in the same scale.  

To augment geochemical data, spatial multivariate morphing transformation (SMMT) (Avalos and Ortiz, 

2022; Avalos et al., 2022) is utilized in this study. SMMT takes randomly sampled data from the initial 

dataset and statistically decorrelates them by mapping them from the initial multivariate space into a 

multi-Gaussian space. The decorrelated variables then are simulated with the spatial structure of random 

Gaussian values by geostatistical simulation algorithm. The simulated data are back-transformed by 

interpolating from the multi-Gaussian space back into the initial space. The interpolated data have a great 

reproduction of the multivariate features and relationships of the initial dataset and hence can be used 

as augmented data. SMMT provides a method to augment geochemical data that not only enlarges the 

variability of the initial data, but also honors the histogram and spatial variabilities of the initial data. 

                                                           
1 Cite as: Li T, Ortiz JM (2022) Spatial multivariate morphing transformation on geochemical data augmentation, 
Predictive Geometallurgy and Geostatistics Lab, Queen’s University, Annual Report 2022, paper 2022-08, 119-131. 
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In this article, we summarize the application of SMMT in geochemical data augmentation, providing the 

workflow of SMMT in augmentation, we show results under different conditions, and discuss about 

problems we are facing and some implementation details. 

2. A brief introduction to the geochemical data 
The geochemical data used in this study is collected from the National Geochemical Surveying and 

Mapping Project of China (Wang et al., 2007; Xie et al., 1997). Standardized stream sediment samples 

from southern Jiangxi in China with an average sampling density of 1 sample/km2 were taken and 

considered as the average geochemical concentration within this sample area (Xie, 1978). A total of 25 

elements can be used in public studies, containing 7 major elements and 18 trace elements. All these 

elements are preprocessed by removing void values and negative values. All the data is located in a 335 × 

335 grid, each grid cell represents 1km × 1km. Fig.1 shows the concentration of iron in the study area. 

 

Figure 1: Geochemical distribution of iron (Li et al., 2022). 

3. Spatial Multivariate Morphing Transform 
In this section, we mainly focus on the workflow of applying SMMT to geochemical data, the theoretical 

background of SMMT can be reached in Avalos and Ortiz (2022). 

1. Choosing landmark points randomly from the original data. Generate unduplicated locations 

from the grid of the study area as the landmark points for one iteration. Geochemical data on 

landmark points are normalized with an average of 0 and with a standard deviation of 1. Calculate 

the omnidirectional direct-variogram of each element and the cross-variogram between elements. 
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2. Generating Morphing factors and pairing with landmark points. Draw morphing factors for each 

element independently from a standard multi-Gaussian distribution with the same amount of 

landmark points. Compute the empirical cumulative distribution functions (CDF) of both landmark 

points and morphing factors. Pair the cumulative probability values of landmarks and the 

morphing factors with optimal transport. Optimal transport computes the Euclidean distances of 

every pair of samples on each dimension and attempts to find the optimal pair with the shortest 

distance over all dimensions. Calculate the omnidirectional variogram of paired morphing factors. 

3. Calculate the average of variograms of generated morphing factors. Repeat Step 2 n 

times (100 times in this study). Calculate the average of all the omnidirectional variograms 

of morphing factors. The average variogram will be taken as the variogram model for 

sequential Gaussian simulation in Step 4. 

4. Sequential Gaussian simulation. Simulate each set of generated morphing factors 

independently using the sequential Gaussian simulation (Goovaerts, 1997) for m times 

(100 times in this study). Compute the direct- and cross-variograms of the simulated data 

and make sure such variograms characterize the spatial structure of the morphing factors. 

5. K-nearest thin plate spline interpolation. Map the simulated data from Gaussian space 

of value range (-∞, +∞) into logit space of value range (0, 1), to be conditioned to the 

cumulative probability values of landmark points of the value range of (0,1).  For each 

simulated point, k-nearest landmark points are utilized as the control points in the thin 

plate spline interpolation (Bookstein, 1989). After interpolation of every point except for 

the landmark points, the result is considered as one augmentation of the original 

geochemical data. Repeat from step 1 for further augmentation until all the original points 

are used as landmark points.  

 

Figure 2: Schematic diagram of the workflow of the SMMT. 

 



 
© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 122 

 

4. Results 
The workflow in section 3 has been applied to three different sets of geochemical data for specific reasons. 

The subset with two dimensions contains two elements, iron and manganese, to intuitively illustrate the 

effectiveness of the SMMT; the subset of 25 dimensions contains the whole geochemical data, to test the 

SMMT on high dimensional data without extra preprocessing; and the subset with 17 dimensions is the 

production of preprocessing that removes the elements that are not correlated with other elements. Next, 

we show the results of the two-dimensional and 17-dimensional cases. Results from the 25-dimensional 

case are similar to those of the 17-dimensions. 

4.1. Subset with 2 dimensions 
Only 2 elements of the geochemical data are selected for illustration of the application of the SMMT on 

geochemical data. The omnidirectional direct-variograms and cross-variogram of two elements are shown 

in Fig.3. Spatial structures on both elements and between elements are observed. 

 

Figure 3: The omnidirectional direct-variograms and cross-variogram of two elements. 

Fig.4 shows the landmark points (blue points) in the original space and the empirical cumulative 

distribution space and one set (out of 100 sets) of morphing factors (red points) in the Gaussian space and 

the empirical cumulative distribution space on the left side. The right side of Fig.4 shows part of the pairing 

of landmark points and morphing factors.  

 

Figure 4: Pairing of the landmark points and morphing factors with 2-dimensional data. 
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After pairing with landmark points, the sequential Gaussian simulation is applied to every set of morphing 

factors with the average variogram model of the morphing factors. We use a maximum of 60 conditioning 

points with data assigned on nodes, and a search radius of 50 km. One realization of the simulation results 

is displayed in Fig. 5 (a). The spatial structure of the simulated data can be observed. The reproduction of 

variograms is shown in upper Fig.6. The direct variogram of iron and the cross variogram between iron 

and manganese are well-reproduced, but the direct variogram of manganese gets higher variance than 

the average variogram model. 

 

Figure 5: One realization of sequential Gaussian simulation, landmark points (dots in (a) with values), the respective result of 
SMMT and original data.  

 

Figure 6: Variograms of the TPS results of 2-dimensional data.  

The morphing factors are mapped into the original space via thin-plate spline interpolation (TPS). All 

points in the grid (except landmark points) are interpolated via TPS based on the 30 nearest landmark 

points. One of the results of the TPS is displayed in Fig.5 (b), which shows a similar spatial structure to the 

original data. The lower part of Fig. 6 shows the variogram of original geochemical data and the variogram 
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of the results of TPS. The variograms of TPS results show higher variances at most lag distances and the 

variograms of manganese are showing a similar structure but with unstable variances. 

4.2. Preprocessed data with 17 dimensions 
One of the purposes of utilizing the SMMT is to decorrelate the original geochemical data before 

simulation. However, high-dimensional data may disturb the optimal transport and affect the pairing. We 

reduce the dimension of geochemical data by removing some elements that are considered not correlated 

to other elements. 17 elements are left and used for augmentation with the SMMT. The omnidirectional 

direct-variograms and some of the cross-variograms are displayed in Fig.7 and Fig.8. All the elements are 

showing spatial structures with different variances. 

 

Figure 7: Omnidirectional direct variogram of landmark points.  
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Figure 8: Omnidirectional cross variograms of landmark points (showing 10 out of a total of 136). 

The pairing result of the iron and manganese of 17-dimension data is displayed in Fig. 9. With the higher 

dimension, the optimal transport of middle rankings is more cluttered than the top/last ranking in the 

cumulative probability values.  

 

Figure 9: Pairing of the landmark points and morphing factors with 17-dimension data. 

Fig. 10 (a) shows one realization of the sequential Gaussian simulation of the 17-dimension data. The 

simulation result exhibits poor spatial continuity with a fragmented spatial structure, which also resulted 

in high nugget effects in the direct-variograms shown in Fig. 11. The cross-variograms which are shown in 

Fig.12 indicate that all the elements are decorrelated.  
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Figure 10: One realization of sequential Gaussian simulation, landmark points (dots in (a) with values), the respective result of 
SMMT, and original data.  

Consequently, the TPS interpolations on such simulation results shown in Fig.10 (b), reproduce the 

trending of geochemical distribution on a large scale, but the spatial structure is not well-reproduced. Fig. 

13 and Fig. 14 show the direct-variograms and cross-variograms of the results of the TPS interpolation. 

The spatial structure of the original data is reproduced but the average variances of results are mostly 

higher than those of the original data, which is similar to the 2-dimensional data. 

 

Figure 11: Direct-variograms of sequential Gaussian simulation results of 17-dimension data.  
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Figure 12: Cross-variograms of sequential Gaussian simulation results of 17-dimension data (showing 10 out of a total of 136).  

 

Figure 13: Direct-variograms of the TPS results of 17-dimension data.  
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Figure 14: Cross-variograms of the TPS results of 17-dimension data (showing 10 out of a total of 136).  

5. Discussion 
Application of the SMMT on the different settings of geochemical data demonstrates that such a method 

can decorrelate the geochemical data and reproduce the spatial structures separately with a univariate 

geostatistical simulation algorithm. This section provides a discussion on several issues in applications on 

high-dimension data and some implementation details. 

5.1. The curse of dimensionality 
There are usually more than ten dimensions in geochemical datasets. Such high dimensionalities lead to 

a huge volume of data space and the available dataset is often inefficient to promise the effectiveness of 

algorithms.  

In this study, the pairing in the optimal transport is sensitive to dimensionality. The optimal transport is 

trying to find the shortest distance to map data from the original space to a decorrelated Gaussian space 

while preserving their univariate relationships, which are their cumulative probabilities in this study. The 

shortest distance is the sum of distance on every dimension. When dimensions increase, the global 

optimal transportation on the whole dataset cannot preserve the univariate relationships on each 

dimension. Fig.15 shows the pairing results of a landmark point and its corresponding morphing factors 

with different dimensions. The ranking of the cumulative probability of landmark points becomes more 

unstable when the dimension increases. 

 

Figure 15: Pairing results of different dimensions.  
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The curse of dimensionality can be handled in two directions: The first is to increase the amount of 

available data, which is infeasible in this study; The other one is to restrict the data space by preprocessing 

the data to remove uncorrelated dimensions and various dimension reduction methods. 

5.2. Landmark points selection 
In geochemical data augmentation, the algorithm is expected to reproduce all the values and spatial 

structures of the original data. Therefore, all the points in the original data should be selected at least 

once as landmark points. The number of landmark points in the augmentation of geochemical data by the 

SMMT is a paradoxical parameter to consider. The more landmark points selected, the more values and 

spatial structures will be captured and reproduced, but the variability of augmented data becomes less. 

5.3. Mapping simulated values 
To project simulated Gaussian values back into the original data space, we use spatially k-nearest 

neighbors of the interpolated point as the anchor of projection in the TPS. This spatial interpolation of the 

simulated Gaussian values follows the ‘First Law of Geography’, which infers that near things are more 

related than distant things (Tobler, 1970). However, spatial interpolation may cause the high variances 

observed in Fig.6 and Fig.13 for not considering the statistical pattern of the landmark points. There is an 

alternative way as the statistical interpolation that projects the Gaussian values by their statistically k-

nearest landmark points. The influences of statistical interpolation on geochemical data are worth 

exploring in future studies. 

In the spatially k-nearest TPS interpolation, a different number of anchor points, k, produces a different 

result of interpolations (Fig.16). Theoretically, the number of anchor points must be larger than 

dimensions+1 while dealing with 2-D data (Rohr et al., 2001). With further increase of the anchor points, 

high values of landmark points show a stronger influence on neighborhoods. Therefore, the number of 

anchor points in TPS can be decided either based on the variogram of landmark points or domain 

knowledge of the geochemical data. 

5.4. Implement details 
In implementing the workflow of the SMMT, there are serval tricks to accelerate the procedures. 

1. Multi-processing of the sequential Gaussian simulation. The sequential Gaussian simulation in 

GSLib can only simulate one dimension at one time. When simulating high-dimensional 

geochemical data, using the same executable program of the sequential Gaussian simulation with 

different parameter files will reduce the time on simulation. 

2. Finding k-nearest points in an adjustable window. When projecting simulated Gaussian values 

back into the original data space, new interpolated points will be added into landmark points for 

better reproduction of the local structure. However, finding the k-nearest points of the simulated 

data requires the distances with all the other points which is a heavy calculation for the algorithm 

with a huge number of landmark points. A window of adjustable size is used to deplete such 

calculation. The size of the window is decided by the on-time density of the landmark points and 

to make sure there are more than k points inside.  
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Figure 16: TPS results of different numbers of anchor points (k).  

6. Conclusion 
In this paper, we presented the workflow of the SMMT on geochemical data for data augmentation. Two 

sets of geochemical data with a different number of elements are utilized in the SMMT. Results of both 

sets of geochemical data have shown that the SMMT could decorrelate the data and reproduce the spatial 

structure of the geochemical data, but the variances of the augmented data were higher than the original 

data. Several problems that might cause this problem were discussed and future studies on improving the 

pairing in the optimal transport by reduction of data space and different ways of interpolation were issued 

to be done. 
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