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Abstract

ShovelSense is a robust shovel mounted X-ray fluorescence sensor that can mea-
sure multiple element grades of each bucket as it is dug at the mine face. The
shovel sensor system allows for the bulk sorting of ore and waste at the mine
face ensuring each truck is sent to its correct destination. Due to the previous
inability of sorting at the truck scale there are not many established methods for
predicting the bulk ore sorting value at a given deposit. The ShovelSense grade
of the truck load is used to define its final destination, which can be different
from the one defined by the short term plan, which is done at block resolu-
tion. In this paper, we present two approaches for quantifying the value of the
truck reassignments based on the measured grade. First, truck loads within the
block are assumed to follow a simple gamma distribution. The second method
uses geostatistical simulation at point support to average the grades at truck or
block resolution. Both distinct data driven methods predict the potential bulk
ore sorting value based on the mine’s current operating selectivity and natural
variability drawn from blastholes or the short term block model. The bulk ore
sorting value predictions are validated with ShovelSense truck diversions from
a dispatch dataset of 28,418 trucks at a low-grade, high-tonnage homogeneous
Cu porphyry deposit. In addition to the algorithms and workflows presented
here, recommendations based on the potential and limitations of each method
are given to practicioners seeking to evaluate the bulk ore sorting opportunity
for any open pit operation.

1. Introduction

The natural variability linked to the mineralization of ore deposits and mining operational
complexity make ore control challenging, resulting in the inevitable loss of ore and dilution of waste
in the ore stream. The accurate sorting of material especially at ore-waste contacts is a significant
challenge in the mining industry which scales with the deposit’s variability (Amirá et al., 2019) and
poor grade control practices (Vasylchuk and Deutsch, 2018). Routine grade control relies heavily
on the measurement of element grades for samples from boreholes, estimation of blast movement,
and constant monitoring with geologists at the mine face. Blastholes are drilled and sampled on
a grid with a spacing that can range from 3 to 10 m depending on the material being blasted.
These grades are used to estimate grades into a block model from which a dig plan is generated.

1Cite as: Faraj F, Ortiz JM, Arnal J (2022) Data driven approaches for estimating bulk ore sorting value,
Predictive Geometallurgy and Geostatistics Lab, Queen’s University, Annual Report 2022, paper 2022-07, 96-118.
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The sparsity of grade measurements, the difficulty of accurately sampling a blasthole, smoothing
introduced through estimation, and material displacement due to blast movement severely limit
the performance of the current grade control processes (Rossi and Deutsch, 2013). Furthermore,
all decisions based on this model are made at block support, which is usually much larger than the
truckload support. This leads to the inevitable ore loss to waste and waste diluting the ore stream,
reducing the efficiency of downstream processes.

ShovelSense is a shovel mounted robust X-ray fluorescence (XRF) based sensor which can
predict elemental grades in each bucket as it is loaded before being dumped into a truck (Figure 1).
This allows the mine to selectively exploit grade variations at a resolution that was not available
before. Significant value can be achieved through bulk ore sorting by reducing the amount of ore
loss to the waste stream and removing waste from material destined for processing. In a typical
setup, the fleet management system (FMS) informs ShovelSense by identifying the buckets that
were combined in a truck and the classification of that truck from the mine plan (e.g., ore or
waste). ShovelSense aggregates the selected ShovelSense bucket grade predictions to the truck
of interest and determines the material classification using the predicted grades. The predicted
material classification is transmitted back to the FMS. If it is different from the original estimated
material classification, the FMS can redirect the truck to the correct destination in a completely
automated fashion requiring no action from the shovel operator or dispatcher.

Figure 1: Schematic of the bucket filling and aggregate XRF spectra acquisition. Fill profile modified after Svanberg et al.
(2021).

Numerous studies have identified the potential for bulk ore sorting revealing that the ore het-
erogeneity (Nadolski et al., 2016; Moss et al., 2018) and the mine’s current ore control efforts
(Sanhueza Passache, 2021) are key drivers in the sorting value in addition to other relevant vari-
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ables such as the sorting efficiency, metal price, processing cost, and operation scale (Li et al.,
2022). Bulk ore sorting evaluation methods will be critical as more mines consider implementing
sensor-based ore sorting systems and decide which are the optimal loading units for sensor instal-
lations. Due to the previous inability of sorting at the truck scale, there are currently limited
published studies quantifying and validating the potential bulk ore sorting value (Li et al., 2019,
2021). Proposed in this paper are two distinct methodologies for assessing the potential bulk ore
sorting value based off truck scaled blasthole grades and variabilities within the selective mining
unit (SMU). The validation of the bulk ore sorting predictions is done by comparing the inferred
value with the value measured from ShovelSense truck diversions at a Cu porphyry mine.

2. Bulk Ore Sorting Value Prediction Workflows

Both bulk ore sorting value prediction approaches are based off the potential revenue generated
from ore recovery and dilution reduction diversions resulting from the reduction of the mine’s
current SMU down to the truck level. The highest resolution ore control data available is used
in a distinct way for each approach to estimate the grades and variability of grades within the
current SMU and discretized to truck sized blocks. The two workflows are a simpler gamma
distribution approach which is easily automated, and a geostatistical dense simulation approach
requiring variogram modeling. Both methodologies start by using or creating an SMU block model
with the ore control data available and discretizing it to truck sized blocks. Then the theoretical
bulk ore sorting value resulting from the ore recovery and dilution reduction truck block diversions
from the SMU block is quantified. Both workflows have the same steps when discretizing to truck
sized blocks and quantifying the value but the grade and variability estimation which drives that
value is distinct (Figure 2).
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Figure 2: Overall methodology for predicting the bulk ore sorting value with either the simple gamma distribution or geosta-
tistical dense simulation approach.

2.1. SMU Discretization to Truck Sized Blocks
The discretization of the SMU blocks to truck sized blocks needs to achieve a mass balance.

The mass of each block is a function of density. For deposits with varying densities this variability
needs to be accounted for. More truck blocks are thus assigned to regions of denser material as the
tonnage is constrained by the truck type. The formula for calculating the number of truck blocks
for each SMU is a simple function of the SMU dimensions, density, and truck capacity which is
rounded to the nearest whole number:

TN = round
(SMUl ∗ SMUw ∗ SMUh ∗ SMUρ

TC

)
, (1)

where l, w, h, ρ are the SMU length, width, height, and density respectively and TC is the truck
capacity.

Figure 3 illustrates two extremely distinct cases where a 20x20x15 m SMU block is discretized
to truck sized blocks for two different densities and truck capacities. Larger SMUs along with
smaller truck capacities will result in more truck blocks for each SMU block and the increased
selectivity will better separate ore and waste generating more value.
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Figure 3: Schematic illustrating the discretization of a 20x20x15 m SMU block to truck blocks for distinct material densities
and truck capacities.

When considering multiple payable or deleterious elements used in a net smelter return or
similar value based cutoff, only the elements which the bulk ore sensing system can measure
should be discretized. In cases where there is an element which cannot be measured by the shovel
mounted sensor, the value of that element for all the truck blocks should be set equal to the
corresponding SMU block. Generally, the more relevant elements the sensor can measure at a mine,
the more valuable the bulk ore sorting tool will be as it provides the highest resolution information
currently possible for ore control. Notice that the truckload volume extracted is approximated by a
rectangular prism with the SMU height and a smaller area in the XY plane. This is not exactly the
geometry of the volume extracted by the shovel to load a truck, but provides a good approximation
of the selectivity associated to the truckloads.

2.2. Simple Gamma Distribution Approach
When the blasthole sampling at a given deposit is not preferential, it can be modeled using

a theoretical distribution without the need for declustering (Chiles and Delfiner, 2012). In cases
where the blasthole sampling is preferential, it must be declustered. Alternatively, the short-term
block model can be used as the input source of grades as it is regularly gridded. Geochemi-
cal element concentrations of ore grades are always positive, have skewed distributions, and are
typically modeled using lognormal distributions (Faraj and Ortiz, 2021) or gamma distributions
(Pizarro Munizaga, 2011; Emery, 2012). For the purposes of estimating the Cu grade in a limited
number of smaller blocks within an SMU, the gamma distribution is chosen as the longer tail of
the lognormal distribution could complicate the SMU reconciliation, especially when the variance
is high (Cadigan and Myers, 2001). When varying multiple elements different distributions could
be chosen based on which best fit each element, and ideally accounting for their relationships. The
probability density for the gamma distribution is given by

P (x) = xk−1e−xθ
θkΓ(k) , (2)

where k is the shape parameter which controls the skewness, θ is the scale parameter which controls
the spread of the distribution, and Γ(k) is the Euler Gamma function. The shape and scale factor
can be written as functions of the mean and variance

k = σ2

µ
, θ = µ2

σ2 (3)

where µ is the mean and σ2 is the variance.
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The gamma distribution method is simple and based mainly off the blasthole data with another
few parameter inputs as detailed in Algorithm 1 and illustrated in Figure 4. Aside from the
blasthole data, SMU dimensions, and truck capacity, which are all fixed, the search radius is the
only parameter which needs to be defined by the practitioner and could be set to 1.25 times the
SMU horizontal length as done here. Squared inverse distance weighted estimates (IDW2) within
the search radius are used to assign the grade of each SMU block and the variance is taken from all
the matched blastholes within the radius as well. Using this gamma distribution, the proportion of
truckload blocks that are above and below the economic cutoff grade can be determined to quantify
the quantity diverted from their original SMU assignment. The exact position within the SMU of
these blocks is irrelevant, only their quantity is of significance.

R(25m)

Blastholes beyond search radiusR
Blastholes within search radius R

SMUi block centroid

IDW2 grade: Z(SMUi)

Variance: σ2(SMUi)

SMUi

20 mBench b

shape: k(SMUi)

scale: θ(SMUi)

Random gamma distributed truck block j
grade withinSMU i block:

Tj ∈ SMUi

Z(Tj ∈ SMUi) = Γ(k(SMUi), θ(SMUi))

18/49 (37%)
Ore recovery
truck blocks

SMU Block
distribution:
Z=0.10 %Cu,
σ2=0.002 %Cu2

0.15 %Cu cut-off

31/49 (63%)
Aligned waste
truck blocks

Figure 4: Methodology for assigning SMU and truck block grades with the simple gamma distribution approach with an example
for a SMU block with a mean grade of 0.10 %Cu and variance of 0.002 %Cu2.
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Algorithm 1: Gamma Distribution Grade Assignment
Input: Blasthole data (BH), SMU data (SMU), truck block data (T)
Input: Benches (b), Search radius (R), Blasthole positions (P (BH)), and grades (Z(BH))
Input: Centroids for each SMU block i (P (SMUi)), and truck blocks j within each

SMU block i (Tj ∈ SMUi)
Output: SMU block grades, variance, and gamma distributed grade for each truck block

1 for each bench b do
/* Filter blastholes, SMU blocks, and truck blocks to bench b */

2

P (BH), P (SMUi) ∈ b

3 for each SMU block i do
/* Search for all matched blastholes (BH′) where the distance d of

P (BH) and P (SMUi) is within R */
4

BH′ = {BH|d(BH− SMUi) ≤ R}

/* Assign IDW2 SMU grade (Z(SMUi)) and variance (σ2(SMUi)) from the
matched blasthole grades (Z(BH′)), average grade (Z(BH′)), and
distances (d(BH′)) */

5

Z(SMUi) =
N∑
n=1

Z(BH′n)
d(BH′n)2 ÷

N∑
n=1

1
d(BH′n)2

6

σ2(SMUi) = 1
N

N∑
n=1

(
Z(BH′n)− Z(BH′n)

)2

/* Calculate the SMU shape (k(SMUi)) and scale (θ(SMUi)) */
7

k(SMUi) = Z(SMUi)2

σ2(SMUi)
, θ(SMUi) = σ2(SMUi)

Z(SMUi)

/* For each of the truck block j draw random gamma distributed grade
(Γ(k, θ)) and scale the truck block grades (Zj(T)) with the SMU grade
(Z(SMUi)) divided by the average truck block grade (Z(T)) */

8

Zj(T) ∼ Γ(k(SMUi), θ(SMUi)), Zj(T) = Zj(T)Z(SMUi)
Z(T)

9 end
10 end

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 102



2.3. Geostatistical Dense Simulation Approach
The use of geostatistical simulations in mining operations is on the rise to quantify heterogeneity

and transfer uncertainty and variability into risk for decision making. A major benefit of simulations
is the ability to quantify the risk associated with the estimation by assessing the spatial variability
(Vann et al., 2002; Rendu, 2002). Here, densely gridded simulations are used to estimate grades at
a truck scale for predicting the potential bulk ore sorting value. Densely gridded simulations have
previously been used to develop high resolution mining models of mineral grades (Charifo et al.,
2013), which have been used for many applications such as informing mining decisions through the
mine value chain (Altinpinar et al., 2020).

The geostatistical dense simulation approach requires only the blasthole data, SMU blocks,
and discretized truck block definitions. First, domains must be established if there is domaining
information available. Then, for each domain, normal score variogram models are developed and
used to generate a number of point support realizations (100 sequential gaussian simulations were
used in our case) in a dense grid defined by the practitioner such as 1 by 1 m in each bench. The
dense grid is averaged to the truck blocks, and then the truck blocks are also averaged to each SMU
block as illustrated in Figure 5. The gaussian simulations proposed serve as an adequate baseline
for typical homogeneous porphyry deposits. However for more geologically complex deposits which
exhibit a high degree of nonlinear features such as veins, channels or folds the simulations could
incorporate locally varying anisotropy (Boisvert and Deutsch, 2011) or different continuity for
different grade ranges through an indicator approach, since standard gaussian simulations have
been shown to miss complex geological structures (Lee et al., 2007).

20 mBench b

Dense geostatistical simulation grid point

2.85 m

SMUi

Tj ∈ SMUi

Blastholes

Figure 5: Methodology for assigning SMU and truck block grades with the geostatistical dense simulation approach.
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2.4. Value Quantification and Validation Methodology
There are multiple ways to calculate the ore recovery and dilution reduction value from the

estimated truck diversions. The optimal way to calculate these will vary from mine to mine. Some
mines ideally use a net smelter return to incorporate additional variables and give an accurate
evaluation. In contrast others may just work based off the Cu content. We propose a generic method
to estimate the ore recovery and dilution reduction value which is applied to both approaches and
the dispatch validation data (Figure 6). For the purposes of comparing the predicted value to
dispatch data for validation, the assumptions and calculations done to quantify the value are not
critical as the same methodology is applied to each. For this deposit, the recovery, recovered
value factor, processing cost, and Cu price are taken as 85%, 85%, 5 USD/t, and 3.50 USD/lb
respectively.

Ore SMU 
Block

Waste SMU 
Block

Value = OreRecoveryValueΣ DilutionReductionValueΣ+
Value = RD*Z*T*R*RVF*P-T*PrΣ

RD – Recovery Diversion
Z – Truck Cu proportion
T – Truck tonnage (t)
R – Recovery
RVF – Recovered value factor
P – Cu price ($/t)
Pr – Processing cost ($/t)

DD*T*Pr

DD – Dilution Diversion
T – Truck tonnage (t)
Pr – Processing cost ($/t)

Σ+

17 Ore Recovery Trucks 14 Dilution Reduction Trucks

Figure 6: Bulk ore sorting value estimation methodology.

3. Bulk Ore Sorting Value Predictions at a Cu Porphyry Mine

Both the gamma distribution and dense geostatistical simulation approach were applied on a
blasthole dataset from a low-grade, high tonnage Cu porphyry mine. The data spans six benches
from which ShovelSense truck data was also collected during several months. There are 23,192
blastholes and 28,418 trucks with ShovelSense grades which are used to validate the bulk ore sorting
value predictions. Figure 7 shows the blastholes and ShovelSense truck Cu grades throughout the
six benches. The Cu porphyry mine has a cutoff grade of 0.15 %Cu and SMU of 20x20x15 m.
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Figure 7: The low-grade, high tonnage Cu porphyry dataset used showing the blastholes and ShovelSense truck grades for each
of the six benches. The vertical scale is four times the horizontal scale.

3.1. Discretization Integrity for Tonnage and Metal Balance
With the mine’s pit density of 2.54 t/m3 there will be 49 truck blocks for each SMU block to

achieve a tonnage balance as outlined in Table 1. From the 23,192 blasthole data, 2,911 SMU blocks
were generated with a corresponding 142,639 truck blocks after filtering out SMU blocks with less
than 10 blastholes in the 25 m radius as these represent blocks along the edges without sufficient
data to be properly evaluated. In addition to achieving a mass balance, the truck block grades
averaged to the corresponding SMU block must also match in metal content. The error metrics
tabulated in Table 1 demonstrate that their is no significant metal mismatch. The discretization
integrity for tonnage and metal content should always be checked for all considered elements as
significant differences could cause errors in the final bulk ore sorting value estimate.

Table 1: Parameters and summary statistics of the SMU to truck block discretization for the tonnage and metal balance.

SMU and Truck Block Tonnage Balance
Parameter SMU Block Truck Block
Width [m] 20 2.857
Length [m] 20 2.857
Height [m] 15 15
Volume [m3] 6000 122
Density [t/m3] 2.54 2.54
Tonnage [t] 15,240 310

SMU and Truck Block Metal Balance
Parameter GammaDistribution - SMU GeostatsSimulations - SMU
Count 2911 2911
Min [%Cu] -9.99e-16 -5.55e-16
Mean [%Cu] 1.46e-18 1.22e-18
Max [%Cu] 8.32e-16 5.55e-16
St Dev [%Cu] 8.53e-17 1.37e-16

For comparing the predicted bulk ore sorting value to the ShovelSense dispatch dataset, the
SMU and truck block data was further filtered to only include blocks within 15 m of a dispatched
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truck. This filter was applied to improve the comparison by roughly matching the SMU and truck
block data to the actual material dug. There will still be some expected noise and errors in the
comparison because there were other shovels without ShovelSense installed working in the same
area but not far enough to filter out.

3.2. Truck Block Grades and Classification
The truck block grades for the gamma distribution were randomly assigned to each block within

the SMU block. The spatial aspect of each truck block is not relevant for the purpose of bulk ore
sorting value predictions. The dense simulation accounts for the spatial distribution of the data
and the continuity is based on the normal score spherical variogram models developed for the three
principal directions of anisotropy given by

γ(h) =


0 for h = 0

C0 + C1

[
3
2
h
a −

1
2

(
h
a

)3
]

for 0 < h ≤ a

C0 + C1 for h > a

, (4)

where C0 is the nugget of 0.20, C1 is the sill contribution of the spherical structure, equal to 0.80,
h is the lag distance, a is the range of 250 m, 140 m, and 80 m for the three directions respectively.

The gamma distributed truck block grades show much higher spatial variability than the dense
geostatistical simulation which drives the difference in the theoretical ore recovery and dilution
reduction from the SMU. A zoomed in section on the SMU block model in Figure 8 highlights the
difference in the spatial distribution of grades for each truck block within the SMU blocks. There are
even many blastholes with different classification from their host SMU block which is also captured
by the gamma distributed grades but not by the dense geostatistical simulation throughout this
variable zone. This is explained because, even for the truck blocks, the geostatistical simulation
takes into account the change of support, that is, the fact that the truckload is much larger in
volume than the blasthole.
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Figure 8: Spatial plots comparing the SMU and truck block grades and classifications for the gamma distribution and geostats
simulation within a variable section.

The SMU grade and variability has the biggest influence on the proportion of truck blocks
classified differently than the SMU blocks. Figure 9 shows that most of the difference in material
classifications occur with more variable SMU blocks near the cut-off of 0.15 %Cu. Even highly
variable blocks don’t result in many theoretical diversions if the SMU grade is significantly higher
or lower than the cut-off. Compared to the ShovelSense truck grades, the gamma distribution was
more variable while the geostatistical simulation was less variable (Figure 10). Despite applying
the 15 m filter, the ShovelSense data still represents less than half of the predicted tonnages and
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could have dug more homogeneous areas.
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Figure 9: Scatter plots of the truck block grades against their respective SMU block grade for the gamma distribution and
geostats dense simulation approaches with a black dashed line highlighting the 0.15 %Cu cut-off.
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Figure 10: Histograms showing the distribution of Cu grades for the gamma distribution, geostats simulation, and ShovelSense
trucks.

The material classification predictions as either ore or waste varied significantly between the
predictions and ShovelSense dispatch diversions (Figure 11). The gamma distribution approach
predicted a total of 20.1% diversions which is similar to the 22.7% measured by the ShovelSense
dispatch data but the predictions resulted in much more dilution reduction than ore recovery which
is opposite of the ShovelSense dispatch data. The geostats simulation significantly underpredicted
the diversions at only 6.1%. The main discrepancy between the deviation types of the gamma
distribution and ShovelSense dispatch data is due to a cut-off change and short term blending
campaigns carried out during the study period without the data being available to account for it.
Nevertheless the diversions are high due to the majority of the grades being close to the cut-off
which is expected of a homogeneous, low-grade, and high-tonnage Cu porphyry deposit.
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Figure 11: Confusion matrices showing the distinct material classifications of the gamma distribution and geostatistical sim-
ulation predictions as well as ShovelSense compared to the dispatch classification.

3.3. Comparing the Predicted and ShovelSense Diversion Value
Since the ShovelSense installed shovel did not dig the entirety of the six benches, there will be

predicted volumes not present in the validation data even after applying the filter to only include
blocks within 15 m of a ShovelSense truck. In order to make a fair comparison it is important to
normalize the predicted value by the tonnage. The weighted average bulk ore sorting value per ton
mined for the ShovelSense diversion data is 1.04 USD/t which was best predicted by the gamma
distribution at 0.94 USD/t while the geostats simulation predicted a lower value at 0.22 USD/t
(Table 2). Interestingly, the gamma method value predictions for benches which did not include
data containing ramps lined up with the ShovelSense diversion data by a weighted average of about
9.3% which is 6.6% better than those with ramps at 15.9%. Despite the best efforts some noise such
as the effect from the ramps is always to be expected with the comparison of two distinct spatial
datasets, especially when considering that the blastholes are fixed in space and the shovel with
ShovelSense measures material in situ after having been displaced and mixed by blast movement.

Table 2: Normalized bulk ore sorting value for the two approaches compared to the ShovelSense dispatch data, the average is
multiplied to a total using the 8.81 Mt from the 28,418 ShovelSense trucks.

Bulk Ore Sorting Value per ton mined
Bench Gamma Distribution Geostats Simulation ShovelSense Dispatch
Bench A [USD/t] 0.80 0.25 0.69
Bench B [USD/t] 0.99 0.22 1.03
Bench C [USD/t] 0.94 0.23 1.09
Bench D* [USD/t] 0.97 0.20 1.13
Bench E* [USD/t] 0.93 0.20 1.2
Bench F* [USD/t] 0.90 0.26 0.83
Weighted average [USD/t] 0.94 0.22 1.04
Total from 8.81 Mt [MUSD] 8.28 1.94 9.16

*Includes a ramp connecting two distinct benches introducing noise in the ShovelSense dispatch data
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4. Discussion

4.1. Discrepancies and Alignment in Ore Recovery and Dilution Reduction Esti-
mates

While the value predictions roughly aligned for the gamma distribution approach, there was
a 6% average discrepancy in the diversion predictions. The mine labels were assigned based on
the mine plan at the time of mining, during which the cutoff changed and there were short term
blending campaigns adding inconsistencies to the originally assigned material type compared to
the fixed 0.15 %Cu cut-off applied to the ShovelSense truck grades. The effects of changing the
cut-off or any kind of special campaigning could be prevented by using the historical ShovelSense
classifications at the time of digging but this data was not available. In order to allow for a more
fair comparison the gamma distribution method was compared to the ShovelSense diversions based
on inverse distance weighted estimates of the blasthole Cu grade to each truck. When compared
to the blasthole classifications, the average discrepancy in diversions reduced to an impressive
0.6%. After exluding ramp data, a bench by bench analysis of the diversion predictions with
the gamma method correlated to the ShovelSense diversions from blasthole classifications with a
pearson correlation coefficient of 0.80 (Figure 12). The weighted average bulk ore sorting value per
ton mined estimate based off ShovelSense diversions from the blasthole estimates is 0.90 USD/t
which deviates by only 4% from the gamma distribution estimate of 0.94 USD/t.
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Figure 12: Confusion matrices showing the distinct material classifications of the gamma distribution predictions and Shov-
elSense compared to a blasthole classification. Also shown a scatter plot of the predicted diversions and the ShovelSense
diversions from the blasthole classification for ore recovery and dilution reduction with the different shades representing dis-
tinct benches.

In addition to predicting the bulk ore sorting value from diversions, the additional Cu metal
and reduced waste processed by the mill can be calculated. The mine plan based on blasthole
classifications would have produced 14,607 t Cu metal and generated 2.5 Mt of waste. With
ShovelSense the Cu production increases by 9% to 15,990 t Cu metal and generates 2.9 Mt waste
which is a 14% reduction in the 0.4 Mt of waste processed by the mill. This compares well to what
the mine plan would be based on the gamma distribution method with the SMU blocks normalized
to the same 28,418 truck tonnage which would have produced 14,756 t Cu metal and 2.9 Mt waste.
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The predicted truck block diversions from the SMU blocks would increase Cu metal by 6% at
15,583 t Cu metal and the waste generated would have been 3.4 Mt waste, an 18% decrease in the
0.5 Mt of waste processed by the mill. The gamma distribution method predictions of Cu metal
increase and processed waste reduction align within 4% of the ShovelSense truck diversions from
the blasthole classifications.

4.2. Potential and Limitations of the Geostatistical Dense Simulation and Gamma
Distribution Approach

The simplicity of the gamma distribution method likely influenced its effectiveness at predicting
the bulk ore sorting value over the dense geostats simulation due the little information available
for the study. To make the geostatistical simulation approach more robust, domaining information
would have been required as treating the entire dataset as a single domain likely had an over
smoothing effect (Lee et al., 2007). Despite the simply defined simulation parameters and single
domain simulation, the resulting geostats simulation distribution matched the ShovelSense truck
grades much better than the gamma distribution. Interestingly the higher variability of the gamma
distribution may have influenced why its predicted value better matched the ShovelSense dispatch
data since the higher in situ variability replicates the effect of blast movement and mixing which
is not accounted for in the static block models. The gamma distribution algorithm could also be
fine tuned by capping the max grade or shifting the median grade to match the mean SMU grade
depending on the input data for a given deposit.

The theoretical standard deviation at truck support was estimated to be 1.20 %Cu based on
the blasthole data using the normal score variogram. Sensitivities were made of the nugget effect
to calibrate this truck block variance with the ShovelSense data. The standard deviation for the
gamma distribution method was 0.140 %Cu which is 0.020 %Cu higher while ShovelSense was
0.104 %Cu which is 0.016 %Cu lower. Despite the 15 m filter applied, the discrepancy in the
variance may have still been influenced by the ShovelSense not capturing more variable areas while
the gamma method did evaluate some of the more variable areas where the shovel did not dig.
Furthermore the variance in the gamma distribution approach could have been scaled to better fit
the deposit. Ultimately the variance of Cu grades depends on the type of deposit (Gerst, 2008)
and if the optimal distribution is uncertain, the gamma or lognormal distributions are adequate
options for most base metal deposits (Journel, 1980).

When using the proposed, or any bulk ore sorting value estimation tool, it is crucial to consider
the data being used. Many mines have shovels which work exclusively in waste where there is
no potential for bulk ore sorting and thus using an entire dataset from the mine may lead to
inaccurate results. To better predict the value a shovel would unlock with a bulk ore sorting sensor
representative data should be used from the pit, phase, or area where it is working. Predictions
could even be made for different phases of the mine to determine a sequence for shovel sensor
installations based on which would maximize the net present value.

When validating bulk ore sorting predictions as done here there are many variables which are
important to consider. The presence of ramps could add noise to the analysis as truck loads by
the shovel will need to be assigned to either the bench above or below. Also assuming a fixed
cut-off grade could be troublesome if the mine changed their cut-off or had some kind of blending
campaigns during the time period being analyzed, these factors could be incorporated if that
information is available.
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4.3. Influence of Selectivity and Deposit Heterogeneity on the Bulk Ore Sorting
Value

The larger SMUs will have a greater bulk ore sorting value when decreasing the selectivity down
to the truck scale. The bulk ore sorting benefit correlates with the remnant uncertainty within a
mining block which depends on the geological variations and sampling but scales with increasing
block size (Chiquini and Deutsch, 2020). Efforts have been made to quantifying the recoverable
reserves from exploration drill hole data to the SMU scale (Boisvert et al., 2008) and studies have
investigated the benefits and downsides to mining with varying smaller block sizes (Jara et al.,
2006). With ShovelSense the selectivity is down to the truck scale and the gamma distribution
bulk ore sorting tool can be run with varying SMU sizes and truck capacities to quantify the bulk
ore sorting value at a truck scale selectivity.

For the 42.84 Mt mined through six benches in the low-grade, high tonnage Cu porphyry
deposit studied here, the gamma distribution bulk ore sorting value prediction tool was run with
several distinct SMUs and truck capacities used in the industry for large open pit mines. The SMU
was varied from 10x10x15 m to 30x30x15 m and the trucks from 205 t to 400 t. As expected,
the most benefit is achieved when reducing a larger SMU to the smallest truck available, however
there is no consideration for the significant negative impact the more selective mining would have
on production costs. However note that the potential limitation of the current approach is that
the support effect is not properly handled. The current data compares sample information taken
at point support and averaged over each shovel load with a discretized simulated truckload block.
This requires further investigation to ensure the smoothing due to the change of support (from
”point” blasthole data to block data) is properly accounted.
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Figure 13: Gamma distribution bulk ore sorting value when digging through 42.84 Mt in six benches varying the SMU and
truck capacity to standard values for large open pit mines.

Another important key driver in the bulk ore sorting value is the natural variability of the
deposit. The schematic in Figure 14 illustrates how the ore recovery value scales with the SMU
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grade variance in four distinct deposits based off the authors’ experience. The gamma distribution
bulk ore sorting tool from the Cu porphyry data used in this study achieved a strong pearson
correlation coefficient of 0.85 when comparing the SMU grade variance to the ore recovery value
(Figure 14). The relationship between the grade variability and ore recovery value is expected to
scale with more variable deposits. Cu porphyries typically represent some of the more homogeneous
deposits which still present significant opportunities for bulk ore sorting when considering the truck
scale.
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Figure 14: Schematic showing how increasingly heterogeneous deposits generate higher ore recovery value with real data from
the gamma distribution bulk ore sorting tool shown for the homogeneous low grade high tonnage Cu porphyry deposit.

As a deposit’s heterogeneity increases the mine will benefit more from increasing its selectivity
with a bulk ore sorting system. While a system like ShovelSense has a negligible impact on mining,
the use of a smaller trucks will likely have a negative impact on production and costs. If the
operational complexity can be handled, extremely heterogeneous areas could even justify the use
of smaller shovels and bucket level sorting by using two trucks side by side to solely load each one
with either ore or waste separately. There is room for optimizing the selectivity and productivity
to maximimize the net present value as illustrated in Figure 15. Areas with lower variability
will benefit more from a more productive mining method while areas with higher variability will
generate additional value with an increased selectivity.
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Figure 15: Schematic representing how the maximum net present value is achieved by optimizing the production rate and
selectivity based on the loading and haulage systems available. Front end loader picture from Caterpillar (2022), excavator
picture from Hitachi (2022), and rope shovel picture from Komatsu (2019).

The gamma distribution bulk ore sorting value prediction tool could even be used by mines
which already have ShovelSense installed. Assuming the mine has mining equipment with distinct
selectivity and productivity, the predicted bulk ore sorting value can be used to optimize where to
send each available unit in the fleet. For example considering the bench shown in Figure 16 more
selective loading and hauling units can be sent to dark green areas with high predicted sorting
value while bigger, less selective units are sent to more homogeneous areas where the sorting value
is predicted to be low as these would benefit more from the increased production rate.

Easting [km]
0.2 0.4 0.6

0.2

N
or

th
in

g 
[k

m
]

0.4

0.6

0.8 Bench D

B
ul

k 
or

e 
so

rt
in

g 
va

lu
e 

pe
r 

SM
U

 [K
U

SD
]

5

10

15

20

25

30 Utilize more
selective mining
equipment to mine
more variable areas

Utilize more
productive mining
equipment to mine
less variable areas

In
cr

ea
si

ng
 N

P
V

In
cr

ea
si

ng
 N

P
V

Figure 16: Map showing the bulk ore sorting value prediction for a bench indicating areas which would benefit from either
more selectivity or a higher productivity.
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5. Conclusion

The discretization of SMU blocks to theoretical truck blocks was proven to be an adequate
method for simulating truck grades based on the average grade and variance of blastholes surround-
ing the SMU blocks. Various bulk ore sorting value parameters based on ShovelSense diversions
from their blasthole classification were successfully predicted by the simple gamma distibution
method (Table 3). The minor discrepancies between the gamma distribution method predictions
and ShovelSense truck data is likely due to a slight overprediction of the variance due to the high
degree of homogeneity within the studied deposit. The dense geostats simulation did not compare
well with the ShovelSense truck data likely due to poor domain definition and likely a discrepancy
in assessing the support effect. A better understanding of the post blast grade variability at the
truck scale could also serve to inform and improve the bulk ore sorting value predictions.

Table 3: Summary of the various gamma distribution method predicted parameters compared to the ShovelSense diversions
from blasthole classifications.

Parameter Gamma Distribution Method ShovelSense/Blasthole diversions Difference
Ore recovery diversions 7.0% 7.4% -0.4%
Dilution reduction diversions 13.1% 12.3% 0.8%
Cu metal increase 6% 9% -3%
Dilution decrease 18% 14% 4%
Sorting value from 8.81 Mt 8.28 MUSD 7.93 MUSD 0.35 MUSD

Here the bulk ore sorting value was estimated for a low-grade, high tonnage Cu porphyry mine.
Future work should consider comparing deposits with distinct natural variability as the deposit’s
heterogeneity likely has the strongest impact on the bulk ore sorting value. While increasingly
variable deposits will reap more benefits from bulk ore sorting, even the more homogeneous Cu
porphyry mines as the one discussed here present various opportunities to reroute trucks to their
correct destinations. Ultimately, when working with a selectivity at the truck scale most magmatic
base metal deposits will present various opportunities for bulk ore sorting.

The value presented here only include the immediate benefits from recovering additional ore
and reducing dilution. The calculation of these immediate benefits will vary from mine to mine
but the most precise information available should be used to get most accurate estimates. There is
still a big need to better understand the impact bulk ore sorting has downstream. A few examples
include increasing the grade and reducing the variability in the mill feed which could improve
recovery (Kurth, 2021), the environmental benefits reducing the tons of CO2 emitted per ton of
concentrate (Sturla-Zerene et al., 2020), or the savings on the operational costs such as pneumatic
maintenance, fuel, or electricity on transportation equipment (de Werk et al., 2017), and the liner
or steel balls of the SAG mills for comminution equipment (Avalos et al., 2020; Yahyaei et al.,
2009).
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