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Abstract 
One of the preliminary and arguably the most crucial step in a mineral resource 
evaluation campaign is the determination of the geological domains. Conventional 
geological methods establish domains primarily by grade zoning or spatial clustering 
techniques. Even though information about the geology is recorded, most model-based 
domains do not make much of the geological information derived from logging. 
Domains are best established with the geological information supported by an accurate 
statistical analysis of the geochemical data and a good understanding of the deposit. 
The advent of machine learning techniques such as cluster analysis has advanced this 
course by providing algorithms that can handle large volumes of multivariate data and 
try to reproduce geological domains. This paper shows the application of a model-
based cluster analysis as a machine learning tool to an exploratory drill hole data set 
from an undisclosed copper porphyry deposit. The K means algorithm, which was 
applied in this study utilizes the continuous nature of the non-categorical variables to 
establish domains. The algorithm generated spatial clusters which had some 
correlation with the alteration unit even though a confusion matrix revealed the flaws 
of the method in misclassifying most of the geological units. The choice of the most 
appropriate number of clusters (domains) to be formed, as well as the selection of 
variables to drive the clustering process can be challenging when performing k means 
clustering, and the appraisal of an expert is still necessary, as the results are subjective. 

 

1. Introduction 
The mining world has not had enough of mineral exploration. Geological mapping, geophysical 

investigation, sampling of outcrops, logging of drill cores are examples of exploratory data that needs to 

be analyzed leaving geologists and engineers overwhelmed with large number of variables. Among these 

data collected are categorical variables about the lithology, alteration and mineralization of an ore body 

which is largely obtained from core logging and after measuring several physical, chemical, and 

mineralogical properties of the rock (Bosch et al., 2002). Knowledge about these geological units is 

important because domains are traditionally established based on them. Domaining in mineral resource 

evaluation is a big step in mining because it serves as a backbone for subsequent geostatistical estimation 

and simulation of the ore body. A poor classification of these domains can lead to the mixing of 

populations, which can result in bad resource estimates, endangering the valuation of grades and 

tonnages (Emery & Ortiz, 2005). A simulated model of an ore body will be a success or failure depending 
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on the accuracy of the domains established. A domain is formed when an ore body is partitioned into 

groups of similar characteristics. For example, groups of high element concentration or groups of low rock 

hardness can form a domain. 

Domains are best established with the geological information derived from logging supported by an 

accurate statistical analysis of the geochemical data and a good understanding of the deposit. However, 

in most model-based domains, attention is not really given to the geological information when 

characterizing different mineralized zones even though it is proven that ore grades vary in relation to 

changes in the geological properties such as mineralogy, lithology and alterations (Yasrebi et al., 2013). 

Despite the non-reliance of geological information to create domains in most mining environments, it 

remains one of the fundamental information to building a good domain (Sterk et al., 2019). In the context 

of unsupervised machine learning, cluster analysis emerges as an efficient tool in classifying sample points 

based on the intrinsic properties of the input variables. K means algorithm clusters data by grouping 

sample into clusters of equal variances thereby minimizing a phenomenon known as the inertia or within-

cluster sum-of-squares (Adams, 2018). This results in clusters that contain objects with similar features 

and at the same time different from objects belonging to a different cluster. Although the algorithm 

clusters based on statistical parameters, knowledge about the deposit was used to select variables to drive 

the clustering process based on their significance to the geological units. For instance, most of the 

variables in our data were attached to the alteration type and hence variables that are trace elements to 

the porphyry copper deposit were selected for clustering (Mg, Al, Ga, Li, SC, V). This was done to derive a 

fast, better performing, and easy to understand model. 

An important factor in K means clustering is the choice of the optimal number of clusters (Moreira et al., 

2021). This paper addresses this issue, applying and further discussing some of the methods that can be 

applied as well as the difficulties found when choosing the best configuration of the clusters. The model 

is validated by comparing the clustered data with logged geological units. Furthermore, a confusion matrix 

is computed to analyze the errors of misclassification. It is an expectation that the clustered geochemical 

data reflects the geology. Proven methods for verifying the spatial relationship of the clusters are rarely 

mentioned in the literature, other than just applying a visual examination of the results.   

The work has been divided in three sections. First, we show the exploratory data analysis for selected 

variables and their distribution in space. This included the histograms and probability plots of continuous 

and categorical variables. Secondly, we performed K means clustering of selected variables to drive the 

clustering based on their relevance to the alteration unit. And finally, the validation of the clustered 

model.  

2. Exploratory Data Analysis (EDA)  
Exploration data analysis forms an essential part of this project. The exploratory data was de-surveyed 

with a 15m run length compositing while breaking intervals by geology for all drill holes using Vulcan 

software. Data analysis was done using the python programming software. The data contained 1898 drill 

holes from a porphyry copper deposit with 50 continuous variables made of 50 geochemical elements and 

three categorical variables (lithology, alteration, and mineralogy). A total of 21,416 composite samples 

with assay results were created with 20, 19 and 25 different lithologies, alterations and mineralogy 

respectively. Deep samples beyond the depth of 1200m were removed and variables whose 

concentrations were unaccounted for were also not considered. The following table shows a summary 
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statistic of some of the variables in the dataset for brevity. The abbreviations “Lito”, “Alt” and “Minz” 

mean Lithology, Alteration and Mineralization respectively. 

Table 1 Summary statistics exploratory data. Note that it does not show all the features of the database. 

 

Figure 1 below shows the results of the first to third quartiles of all 50 elements to provide us a fair idea 

of the relationship between the dominant variables and the less dominant ones. 

The concentration of copper stands out with extremely high values especially from its third quartile to the 

maximum. The cumulative probability plot of Cu values shows a fairly log normal distribution with 

consistently high detection limits of the element as shown in figure 3. The extreme high concentrations 

of elements could be outliers, measurement or samples errors, or values beyond the detection limit. The 

negative minimum values of sample 1 (Au) are samples values that were unaccounted for and that was 

not considered for analysis. 

   

 

 

 

 

 

 

 

 

Figure 1 Relatively high Cu concentrations compared other elements. 

count unique top freq mean std min 25% 50% 75% max

Dhid 21416

Midx 21416 NaN NaN NaN 14971.1 18049.1

Midy 21416 NaN NaN NaN 105792.3 107625.6

Midz 21416 NaN NaN NaN 1833.9 3110.2

Length 21416 NaN NaN NaN 0.04 15

From 21416 NaN NaN NaN 0 1197.45

To 21416 NaN NaN NaN 0.4 1198.2

Lito 21416 19 50 9603 NaN NaN NaN NaN NaN NaN NaN

Alt 21416 17 51 5621 NaN NaN NaN NaN NaN NaN NaN

Minz 21416 25 70 7712 NaN NaN NaN NaN NaN NaN NaN

Cu_ppm 21416 NaN NaN NaN 6112.9 2777.7 46.8 3972 5950 8710 10000

Mo_ppm 21416 NaN NaN NaN 92.04652 119.8602 0.45 34.9175 64.7745 113 2890

Mg_ppm 21416 NaN NaN NaN 0.442924 0.558493 0.01 0.03 0.094 0.81 3.033

Al_ppm 21416 NaN NaN NaN 0.980977 0.661739 0.06 0.46 0.74 1.42 4.519

Ga_ppm 21416 NaN NaN NaN 2.591729 2.012614 0.093 1 1.8 3.80525 13.35

0

2000

4000

6000

8000

10000

au re zn sb ni as be cr ga in li na rb sn th u y

C
o

n
ce

n
tr

at
io

n
 (

p
p

m
)

Elements

1ST, 2ND AND 3RD QUARTILES OF 
ELEMENTS

q1

q2

q3



 
© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 50 

 

The following figures represent the box plot of the distribution of copper present in each geological 

category. This helps us to see the distribution in detail and help identify dominant terrains where our 

focus should be. Rock code 31, 33 and 50 are the dominant lithologies which host majority of the high 

grades. Alteration codes 50 and 51 stand out while 50 and 70 are the dominant mineralization codes. 

Grades of copper are distributed across the features in all three categories and a few outlier values are 

noted. 

 

 

 

Figure 2 Copper distribution based on the three categories in different features 
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Figure 3 Probability plot of Cu values (top) and Histogram Cr, Cs, Ga and Cu distribution (below) 

In the probability plot in figure 4, the variables show a clearer distinction of the populations in the 

alteration types, a characteristic which is not obvious in the other geological units. This suggests that the 

alteration is a huge factor when establishing domains and the distribution of most of the elements may 

vary by alteration. 

Finally, the spatial distribution of the samples was also visualized in two dimensions as shown in figure 5, 

with preferential sampling on high-value areas, especially on its central portion, where it shows a north-

east south-west trend of high values. 
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Figure 4 Distribution of Mn, Zn, Mg and Y by alteration. Two distinct populations can be observed 

 

Figure 5 Location map of samples with copper concentration (left) and the various alterations units (right) 

From the figures, alteration type 52 seems to be dominant alteration which host most of the high-grade 

copper values. Alteration type -99 is an unverified alteration and hence not regarded. 

To understand the spatial correlation between elements, a correlation matrix was computed which 

showed poor correlation of copper with other elements in the matrix even though some trace elements 

of the deposit show some form of correlation with each other. Mg, Al, Ga shows a good correlation. 
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Figure 6 Correlation matrix of 50 continuous variables (top) and scatter plot showing correlation of La and Ce, and 

Al and Mg respectively. Color codes didn’t matter at this point. 

In summary, the structure of the data is well understood. Deep samples are removed and variables whose 

results are unaccounted for are redundant. We see how the samples are distributed in space.  

In the next section, unsupervised classification using K means will be conducted. Most of the results will 

be shown in 3D.  

3.    Cluster analysis - K Means 
The K-Means procedure is one of the most popular machine learning algorithms used in cluster analysis, 

due to its simplicity, interpretability and application to large amounts of data (Adams, 2018). It is most 

useful for creating a small number of clusters from many observations. Due to the large number of 

possible clusters that can be formed, the quality of the output is not guaranteed. The K means algorithm 

clusters data by separating observations into groups of equal variances, minimizing a phenomenon known 

as the inertia or within-cluster sum-of-squares as shown in the equation below (Davies & Bouldin, 1979). 
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Clustering was done using the web application Jupyter Notebook, with Python 3.6.5 installed via 

Anaconda; processor AMD Ryzen 5 3600 6-Core Processor 3.60 GHz, with 16.0GB RAM, Windows 10, 64 

bit. 

Two important factors that drove this analysis were the number of clusters to choose and the selection of 

variables to drive the clustering process. The performance of the clustering algorithm depends on the 

value of K. Therefore, we performed the well-known elbow analysis to determine the optimal number of 

clusters as well as a set of values for k. It is also important that the number of values considered should 

reflect the specific characteristics of the data sets which is the main motivation for performing data 

clustering (Pham et al., 2005).  

 

Figure 7 Determination of optimum cluster number using the elbow method. Optimum number was set at 4 

The selection of variables from the geochemical data to inform the clustering process forms part of 

inputting domain knowledge to aid clustering since our objective is to reproduce the geology based on 

the geochemistry. Six elements associated with the porphyry copper deposit (Al, Ga, Mg, Li, Sc & V) were 

used. It is important to note that the type of domains formed is a factor of the variables selected (Faraj & 

Ortiz, 2021).  Since most of the elements show significant changes with the alteration, we’re expecting 

our domains to be more consistent with the alteration than the rest of the geology.  

The following display shows a three-dimension clustered data of the selected variables with the elbow 

method optimal number of 4 as well as two other cluster number values (3 and 10).   
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Figure 8 A 3D display of clustered drill hole data showing for cluster numbers 3, 4 and 10 represented as a, b, c 

respectively and the lithology, alteration and mineralization as d, e, f respectively. 

It can be observed that all the three clustered data follow the alteration pattern better than either 

lithology or mineralization. Having established this fact, clustering with four clusters seems the better of 

the other cluster numbers in reproducing the alteration features. This validates the selection of the 

optimum number (4) by the elbow method. A cluster number of 10 was used because of its proximity to 

the total number of alteration features but it could not reproduce the alteration due to the larger volumes 

of the predominant features of the unit which overshadowed the fewer units.  

Majority of the cluster labelled ‘0’ (in blue colour) falls within alteration code 50 and 51. Clusters labelled 

1 and 2 fall in alteration code 40 and 41 while the final cluster lies in the alteration 30. The K means 

algorithm assigns a cluster to a geological feature based on the highest number of clustered elements 

found in each feature. For example, if majority of the members in a particular cluster belongs to a 

particular lithology, K means predicts the cluster as that lithology. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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4.    Validation 
To further validate the predicted clustered domains, a confusion matrix was computed. The confusion 

matrix shows the ways in which the algorithm is confused when it makes predictions, and highlights the 

errors made by the classifier. Since there are three geological categories present, this section validates 

the clustered data by these categories.  

The major lithological groups present in the data were represented by codes 31 and 50 as seen in figure 

9. K means prediction for the major groups attained an average accuracy of about 80% when compared 

to the logged lithology. The spatial distribution of the logged lithology showed that about 95% of the 

lithology with code 31 were rightly identified by the clustering algorithm. Rock code 50 which is the most 

abundant lithology was also rightly predicted. However, about 30% of lithology code 50 was misclassified 

as 30 by the algorithm as well as a few blocks of lithology code 30 was misclassified as 50. Due to the large 

number of lithologies present, misclassifications of the fewer groups are expected which leads to the 

decline in accuracy as it becomes trickier predicting delicate differences in units that are not largely 

represented or have significant similarities with the major groups. 

  

 Figure 9 Confusion matrix of K means predicted units versus logged lithology  

The logged alteration units contained five major units (40, 41, 50, 51, 52) with code 51 being the most 

abundant although the difference is not large. The algorithm predicted accurately for alteration codes 51 

and 40. However, alterations that are close to code 51 are predicted as 51 as shown in figure 10. This may 

be due to close similarities in alterations which was evident in the grades. As captured in the probability 

plot in figure 5, the algorithm identifies two distinct groups of alterations. Similarly, misclassifications can 

be due to the insignificant representation of other alterations or due to their similarities. 

The mineralogy exhibited a monopoly of predicted mineralization zones. The algorithm assigned every 

mineralogical zone to code 70. The algorithm performed poorly by not being able to predict the various 

mineralogical units present in the data. This shown in figure 11. 
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Figure 10 Confusion matrix of predicted alteration zones versus logged alteration 

 

Figure 11 Confusion matrix of predicted mineralization zones versus actual mineralization 

5. Conclusion 
The results from this study show that although very effective and is one of the most used algorithms in 

machine learning, the sole application of the classical k-means is quite handicapped in geological 

modelling, despite the spatial contiguity it exhibits. Outliers present in the data were not properly 

captured which accounts for some of the misclassification. 

According to the model, clusters delineated by the algorithm show some form of consistency with the 

logged alteration unit but forms an insignificant correlation with the rest of the categorical variables. The 

confusion matrix revealed the major flaws of the algorithm in its inability to classify units that are similar 
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or close to each other. Even though the clustered model showed a correlation with the alteration, the 

confusion matrix exposed its weakness in the number of misclassified units. The clustering resulted in a 

mixed-up population with the major units overlapping each other. The probability plot of the alteration 

unit indicates the presence of two major populations.  

A more adequate approach is needed to account also for the geographic distribution of samples, which is 

done by some modern clustering techniques, such as the local autocorrelation-based clustering algorithm. 

The selection of variables that do not properly represent the difference in the geological units would lead 

to a poor discrimination by algorithm, reducing the accuracy of the model. 
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