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Predictive Geometallurgy and Geostatistics Lab 

Queen’s University 
 

Annual report 2021 
 

This report summarizes the ongoing research of the Predictive Geometallurgy and Geostatistics 

Laboratory at Queen’s University in Kingston, Ontario, Canada. 2021 was a challenging year, with 

continuous restrictions to meetings and limited group interactions. Despite these difficulties, the lab 

completed important and novel work. The delay in the release of this report is just another sign of the 

strain of the last couple of years, however, results are encouraging and the lab is doing important 

contributions to research and industry. 

This year, two students graduated, one Master of Applied Science and one Doctor of Philosophy, two new 

students joined the group. The following two theses were completed in this period: 

• Mehmet Altinpinar, M.A.Sc. (Sep. 2021), “Synthetic high resolution block model for 
benchmarking mining technologies” 

• Sebastian Avalos, Ph.D. (Sep. 2021), “Advanced predictive methods applied to geometallurgical 
modelling” 

 

The work in this annual report includes that of the six graduate students active in 2021. The research 

group is composed of: 

• Mehmet Altinpinar, M.A.Sc. student  

• Sebastian Avalos, Ph.D. student (continues as a Post-Doc) 

• David Casson, Ph.D. student 

• Kasimcan Koruk, M.A.Sc. student 

• Paula Larronfo, Ph.D. student 

• Alvaro Riquelme, Ph.D. student 
 

Two new M.A.Sc. students started their programs in 2021 

• Noble Potakey, M.A.Sc. student 

• Alvaro Mariño, M.A.Sc. student 
 

We continued collaboration with other faculty members and researchers, including: 

• Willy Kracht, Adjunct Professor – The Robert M. Buchan Department of Mining (Queen’s 
University) and Associate Professor – Department of Mining Engineering (U. de Chile). Dr. Kracht 
and Dr. Ortiz co-supervise Carlos Moraga in his Ph.D. in Mining Engineering at Universidad de 
Chile. 

https://qspace.library.queensu.ca/handle/1974/29527
https://qspace.library.queensu.ca/handle/1974/29527
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• Asli Sari, Assistant Professor – The Robert M. Buchan Department of Mining (Queen’s University). 
Dr. Ortiz and Dr. Sari co-supervised Mehmet Altinpinar in his M.A.Sc. 

• Raimon Tolosana-Delgado, Senior Scientist (Helmholtz-Zentrum Dresden-Rossendorf). Dr. 
Tolosana-Delgado hosted a research internship of Sebastian Avalos. 

• Brian Frank, Professor – Electrical and Computer Engineering (Queen’s University). Dr. Frank and 
Dr. Ortiz co-supervise Paula Larrondo in her Ph.D.  

Eight contributions are available this year, totaling 92 pages, with very innovative topics, including causal 

inference, reinforcement learning, and topology of random fields, in addition to documentation of 

machine learning methods, planning and geostatistical methods. Industrial collaboration continues with 

SRK Consulting Canada, Natural Research Council (NRC) and ArcelorMittal Mining Canada G.P.  

As always, we welcome industrial and academic collaboration. This provides opportunities to fund new 

graduate students and novel research, and directly benefits industrial partners. If interested, please send 

a note to julian.ortiz@queensu.ca. 

 

 

Julian M. Ortiz 

Associate Professor, The Robert M. Buchan Department of Mining  

Director, Predictive Geometallurgy and Geostatistics Lab 

Queen’s University 

December 2021 
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Journal and Conference Publications and Presentations 
 

Publications in book chapters, peer-reviewed journals and international conferences are listed below for 

2021. These are not included in this report, since the copyright belongs to the corresponding publishers, 

but can be requested for personal use or research purposes directly to julian.ortiz@queensu.ca. 

Book chapters  

1. Sadeghi B, Ortiz JM (2021) Simulation, in Encyclopedia of Mathematical Geosciences, Daya Sagar B, 

Cheng Q, McKinley J, Agterberg F (Eds.), Encyclopedia of Earth Sciences Series, Springer, Cham, 6 p. 

https://doi.org/10.1007/978-3-030-26050-7_292-1   

2. Caers J, Mariethoz G, Ortiz JM (2021) Multiple Point Statistics, in Encyclopedia of Mathematical 

Geosciences, Daya Sagar B, Cheng Q, McKinley J, Agterberg F (Eds.), Encyclopedia of Earth Sciences 

Series, Springer, Cham, 11 p. https://doi.org/10.1007/978-3-030-26050-7_24-1   

 

Journal papers   

1. Cevik IS, Leuangthong O, Cate A, Ortiz JM (2021) On the use of machine learning for mineral resource 

classification, Mining, Metallurgy & Exploration, 38:2055-2073. https://doi.org/10.1007/s42461-021-

00478-9    

2. Faraj F, Ortiz JM (2021) A simple unsupervised classification workflow for defining geological 

domains using multivariate data, Mining, Metallurgy & Exploration, 38: 1609-1623. 

https://doi.org/10.1007/s42461-021-00428-5   

3. Riquelme AI, Ortiz JM (2021) Uncertainty assessment over any volume without simulation: revisiting 

multi-Gaussian kriging, Mathematical Geosciences, 53:1375-1405. https://doi.org/10.1007/s11004-

020-09907-9  (Correction: https://doi.org/10.1007/s11004-021-09927-z)   

4. Cevik IS, Ortiz JM, Olivo GR (2021) A combined multivariate approach analyzing geochemical data 

for knowledge discovery: the Vazante-Paracatu Zinc district, Minas Gerais, Brazil, Journal of 

Geochemical Exploration, Vol. 221, 106696. https://doi.org/10.1016/j.gexplo.2020.106696    

 

Conference papers and presentations   

1. Riquelme AI, Ortiz JM (2021) A non-stationary linear model of coregionalization, in 11th International 

Geostatistical Congress, Toronto 2021, July 12-16, 2021. 

2. Avalos A, Ortiz JM (2021) Geometallurgical modeling and deep Q-Learning to optimize mining 

decisions, in 11th International Geostatistical Congress, Toronto 2021, July 12-16, 2021.  

3. Cevik IS, Leuangthong O, Cate A, Machuca-Mory D, Ortiz JM (2021) Mineral resource classification 

using machine learning, in 11th International Geostatistical Congress, Toronto 2021, July 12-16, 2021.  

mailto:julian.ortiz@queensu.ca
https://doi.org/10.1007/978-3-030-26050-7_292-1
https://doi.org/10.1007/978-3-030-26050-7_24-1
https://doi.org/10.1007/s42461-021-00478-9
https://doi.org/10.1007/s42461-021-00478-9
https://doi.org/10.1007/s42461-021-00428-5
https://doi.org/10.1007/s11004-020-09907-9
https://doi.org/10.1007/s11004-020-09907-9
https://doi.org/10.1007/s11004-021-09927-z
https://doi.org/10.1016/j.gexplo.2020.106696
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4. Larrondo P, Frank B, Ortiz JM (2021) State of the art in providing automated feedback to open-ended 

student work, CEEA/ACEG 2021, Annual Conference of the Canadian Engineering Education 

Association, Charlottetown, PEI, June 20-23, 2021. 

5. Riquelme AI, Ortiz JM (2021) An approach to characterize complex geological models based on 

higher-dimensional surfaces, Geomin-Mineplanning 2021, 7th International Conference on Geology 

and Mine Planning, June 9-11, 2021. 

6. Avalos S, Ortiz JM (2021) Open pit mine scheduling via deep Q-Learning, Geomin Mineplanning 2021, 

7th International Conference on Geology and Mine Planning, June 9-11, 2021. 

7. Avalos S, Ortiz JM (2021) Heuristic risk-based policy to outline final pit in open mines, CIM VTL 2021, 

Virtual Convention + Expo, May 3-6, 2021. 

8. Riquelme AI, Ortiz JM (2021) A geostatistical approach to characterize complex geology, CIM VTL 

2021, Virtual Convention + Expo, May 3-6, 2021. 

9. Ortiz JM (2021) Geometallurgical modeling to manage uncertainty in a mining system, invited talk, 

10 Years of Helmholtz Institute Freiberg for Resource Technology, September 9, 2021, Germany. 

10. Ortiz JM (2021) Machine learning in mining, invited webinar, Colegio de Ingenieros de Peru – Consejo 

Departamental de La Libertad, Apr 23, 2021. https://fb.watch/575-W1q_nB/   
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Research Council), Nov 5, 2020. 

 

 

 

Funding 
 

Research is possible thanks to the funding provided by Queen’s University Research Initiation Grant, 

NSERC through funding reference nos. RGPIN-2017-04200 and RGPAS-2017-507956, Mitacs Globalink 

IT17457 in collaboration with TU Bergakademie Freiberg, Germany, NSERC-Alliance ALLRP 554627-20, in 

collaboration with ArcelorMittal Mining Canada, G.P., and National Research Council. 

https://fb.watch/575-W1q_nB/
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Progress towards geometallurgical digital twins1 
Julian M. Ortiz (julian.ortiz@queensu.ca) 

Abstract 
A digital twin should capture the behavior of a process. However, most 
geometallurgical steps have uncertain inputs, and uncertain responses, since the ore 
properties are variable and not fully known, and the physics and chemistry involved in 
the processes may be too complex to fully understand them. Despite these challenges, 
uncertainty can be managed and a geometallurgical digital twin can be built, 
incorporating this uncertainty as a random variable. The response is therefore variable 
but can be optimized. In this note, some insights are provided about the steps taken in 
the research community to create the building blocks of what can become an 
integrated digital twin of the geometallurgical processing of the ore in a mining system.  

 

1. Introduction 
A digital twin can be defined as an ultra high-fidelity simulation of a real object or process, and that can 

be connected to this physical object or real process. Digital twins originated in the manufacturing industry 

and were later adopted by NASA for applications such as testing a vehicle under extreme conditions for 

space exploration and military applications [Glaessgen and Stargel, 2012]. In most applications, a concrete 

object or process is considered, thus limiting the modeling effort to a relatively limited number of physical 

laws or chemical reactions that are well understood.  

Mining is moving towards Industry 4.0, incorporating concepts of interconnectivity, through Internet of 

Things (IoT) and smart automation [Loow et al., 2019]. The true digitalization of the mining industry will 

happen only when automated decision-making can be implemented. Currently there are many efforts in 

progress to implement integration, predictive modeling, and automation in the mining industry [Dominy 

et al. 2018], but the idea of a fully integrated and fully automated operation is far from practical at this 

point. 

In the coming sections, approaches that are already available are discussed, that could be integrated into 

a geometallurgical framework, to provide the basis for automated decisions. Some of the missing 

components needed to achieve the idea of a geometallurgical digital twin of a mining operation are also 

identified. In particular, the focus is on uncertainty management and decision-making. 

2. Geometallurgical framework 
A geometallurgical digital twin (GDT) can be created by combining realistic models of the different stages 

of the mining value chain, where particular inputs lead to outputs that feed other processes downstream 

(Figure 1). 

 
1 Cite as: Ortiz JM (2021) Geometallurgical modeling framework, Predictive Geometallurgy and Geostatistics Lab, 
Queen’s University, Annual Report 2021, paper 2021-01, 7-13. 

mailto:julian.ortiz@queensu.ca
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.  

 

Figure 1: Illustration of connected processes [Avalos, 2021]. 

What is important, is that the outputs include all the relevant attributes that will influence the response 

of the process and of all subsequent processes (depicted as forward green arrows in the previous figure) 

[Ortiz et al., 2015; Avalos, 2021]. This means that the model must integrate many variables and if these 

variables cannot be measured, they must be incorporated through “soft sensors” or non-regressive 

predictive models (for example, stochastic models) that can realistically capture the associated 

uncertainty around an unbiased estimate of the true value. Furthermore, the components must be 

interrelated to account for the interactions between processes and feedback (backward green arrows in 

previous figure). Real time measurements can help maintain a stream of information used to calibrate 

and control the system [Benndorf and Jansen, 2017].  

3. Building blocks 
A mining system can be seen as a sequence of stages or processes. Broadly, Figure 2 shows a simplified 

depiction of the parallel between the actual ore deposit, mine and operation (at the top) and the modelled 

resources, reserves and extraction (bottom). Ideally, in a GDT the model (bottom) should be constantly 

fed with information from the real operation (top), and the stages and processes in the model should 

follow the systems approach presented in Figure 1. 

 

Figure 2: Mining system: actual (top) vs model (bottom). 

Given the complexity of stages and processes in mining, the behavior of each component of the system 

can only be approximated.  Real time sensors, composited measurements, and soft sensors can be used 

to update the status of the twin (model). This requires smart sensors and measurements, high speed 

communication to transfer this information in real time, and models that can predict the response and 

assess the potential variability linked to the uncertainty in rock properties, and in the process 
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performance. This predicted output must be compared to other measurements of the actual output, for 

the models to learn. Once properly calibrated and trained, a smart agent can take over the decision-

making process, to: (1) Optimize each process and (2) Optimize the system. It should be emphasized that 

today, automatic control systems exist, but are limited to specific processes, particularly in processing 

plants. 

4. Examples  
Each stage in Figure 2 has seen significant progress with the use of geostatistics, machine learning, deep 

learning, and other statistical modeling techniques. Table 1 reviews some examples where these 

techniques are applied and references where these methods and models are developed.  

Table 1: example applications of modeling into different stages of the mining value chain. 

Stage Step Technique References 
Resource 
model 

Domaining Unsupervised geochemical classification for domaining [Faraj and Ortiz, 2021] 

Machine learning to model alteration [Berube et al., 2018] 

Geostatistical clustering [Fouedjio at al., 2017] 

Geological modeling Pluri-Gaussian simulation with local proportions [Emery et al, 2008] 

Indicator simulation with locally varying directions [Gutierrez and Ortiz, 2019] 

Deep learning for geological modeling [Avalos and Ortiz, 2020] 

Attributes modeling Multivariate modeling of geometallurgical attributes [Deutsch et al., 2015] 

Compositional data modeling [Tolosana-Delgado et al., 2019] 

Projection Pursuit multivariate transformation [Barnett et al., 2014] 

Upscaling Non-linear modeling of geometallurgical attributes [Deutsch, 2015] 

Uncertainty assessment at any block support [Riquelme and Ortiz, 2021] 

Change of support of non-additive variables [Garrido et al., 2019] 

Design and 
reserve 
model 

Design optimization Risk-based selection of ultimate pit limit  [Jelvez et al., 2022] 

Underground design optimization [Sari and Kumral, 2020] 

Surface and underground optimization under uncertainty [Montiel et al., 2015] 

Classification  Resource and reserve classification with machine learning [Cevik et al. 2021] 

Mine plan Extraction sequence  Stochastic optimization for planning [Dimitrakopoulos, 2011] 

Schedule Stochastic integer programming accounting for 
uncertainty of geometallurgical attributes 

[Morales et al., 2019] 

Demand-side 
management 

Managing energy consumption via DSM for integration of 
renewable energy sources 

[Diaz et al., 2016] 

Cutoff grade optimization based on stochastic resource 
models with stockpile for long-term planning 

[Asad and Dimitrakopoulos, 
2012] 

Mineral 
processing 

Crushing and grinding Hardness prediction with deep learning [Avalos et al, 2020a] 

Data-driven grinding processing modeling  [Lv et al., 2020] 

Particle size 
classification 

AI driven air classification of particles [Otwinowski et al., 2021] 

Concentration 
or 
metallurgical 
process 

Flotation Deep learning to determine froth flotation performance [Pu et al., 2020a] 

Deep learning froth flotation recovery prediction [Pu et al., 2020b] 

Leaching Recovery prediction in leaching using machine learning  [Flores and Leiva, 2021] 

 

From this list, it is easy to see that, if these methods are wrapped appropriately to be connected into a 

larger and integrated system, the first steps towards automatic prediction, learning and automatic 

decision-making are possible. Encouraging results in the design of intelligent agents with reinforcement 

learning have already been developed [Avalos, 2021] and demonstrate that a data-driven approach that 

continuously learns and refines its results is possible, leading to a twin of the actual deposit and operation. 
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The uncertainty caused by the limited sampling, can be compensated with real-time feedback loops to 

ensure the model remains calibrated and close to the actual state of the operation.  

Each one of the stages described above has a broad variety of problems, hence models are available for 

specific circumstances and need generalization. There are also many other aspects of the “towards full 

automation and integration” vision that can be considered, including: product control, environmental 

footprint control, energy and water use. See for example [Avalos et al, 2020b; Ortiz et al., 2020].  

Finally, it is important to mention that these technologies can only be integrated if a proper high-speed 

and low latency communication protocol, such as the 6G technology [Boxall and Lacoma, 2021], and 

adequate computer power or algorithmic efficiency [Peredo et al., 2015; Peredo et al., 2018] is developed.  

5. Conclusions 
A digital twin of an operating mining operation is possible if advanced predictive technologies are used to 

put in place a model of each stage that accounts for the proper inputs and outputs that have an impact in 

the entire value chain. Tracking materials and measuring properties becomes essential to capture the 

system’s behavior and learn from it, through data. Enabler technologies, such as high-speed data 

communication and high-performance computing are essential to achieve a fully automated and 

integrated model, that matches the operation state, while handling the forecasted uncertainty at every 

step and optimizing decisions, under these circumstances. 
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Abstract

Reinforcement learning has achieved remarkable performances on oriented deci-
sion making problems. The agent-environment framework provides the principles
for mapping states-and-actions to expected value rewards, maximizing the long-
term total reward. The mapping function can be retrieved from look-up tables
when the space of states and actions are small enough to maintain computational
efficiency, or parametrized as an approximation of the underlying mapping. In
real life problems, the environment is often incomplete, and the space of states
and actions are non trackable or computationally unmanageable. Recent ad-
vances on Deep Learning have led to implement deep neural networks to approx-
imate the mapping function, referred as deep Q-Learning. In this brief article,
we review the building blocks of reinforcement learning with a final focus on the
principles of deep Q-Learning.

1. Introduction

The field of reinforcement learning (RL) has its roots and draws insights from neurosciense, psy-
chology, and computer science (Ludvig et al., 2011). Collaborative efforts have helped to strengthen
the RL framework, providing methods and models on how agents (animals, humans or robots) learn
to make decisions from past experiences of agent-environment interaction (Sutton and Barto, 2018).
From a computational perspective, reinforcement learning is the framework of machine learning
in which an agent is trained to maximize the reward over time as a result of chosen actions in a
sequence of interactions within a particular environment. The learning process follows the princi-
ples of sequential decision making, where actions influence the immediate reward, the environment
state, and all subsequent environment states, feasible actions and possible states. Therefore, the
agent must learn the evaluate the quality of taking an action based on the current environment
state and according to the immediate reward and delayed rewards.

To introduce concepts, we explore the following reduced-learning setting: every time, an agent
must make a choice between k different actions, receiving an immediate reward drawn from a sta-
tionary distribution, without perceiving and/or altering the environment. The aim is to maximize
the total reward in a finite number of choices (time steps). Let at be the action selected at time
step t, and rt the corresponding reward. The value of selecting the action a corresponds to the
expected reward, and can be expressed as:

q∗(a) .= E[rt|at = a] (1)

1Cite as: Avalos S, Ortiz JM (2021) Fundamentals of deep Q-Learning, Predictive Geometallurgy and Geostatistics
Lab, Queen’s University, Annual Report 2021, paper 2021-02, 14-21.
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Maximizing the total reward is trivial when q∗(a) is known for all possible actions a: select the
action with highest value. Naturally, we do not have access to the real value q∗(a) but it can be
estimated based on previous experiences. Let qt(a) be the estimated value of selecting action a at
time step t. Without considering when an action was taken but only the number of times it was
taken and each of the corresponding rewards, a simple way to estimate the value of an action is by
the sample-average method as:

qt(a) =
∑t−1

i=1 ri · ⊮ai=a∑t−1
i=1 ⊮ai=a

(2)

where ⊮ai=a is 1 when ai = a, and 0 otherwise. The action with highest value is drawn as:

at = arg max
a

qt(a) (3)

The action(s) with highest estimated value is called a greedy action. We refer to the process of
selecting a greedy action as exploitation, since the agent is exploiting the accumulated knowledge
of previous experiences. We refer to the selection of non-greedy action as exploration. The latter
allows the agent to update the estimate of non-greedy actions. The trade-off between exploration
and exploitation is non trivial. Nevertheless, we can easily argue that exploration is fundamental
in the early stages of a learning process, whereas exploitation is desired when certain stationarity
is observed in the estimated values, in the latest stages of a learning process.

When looking at a single action that has been selected n times, we can compute the current
estimated value qn as:

qn+1 = r1 + r2 + · · · rn−1 + rn

n

qn+1 = 1
n

(
rn + n− 1

n− 1

n−1∑
i=1

ri

)

qn+1 = 1
n

(
rn + (n− 1) · qn

)
qn+1 = qn + 1

n

(
rn − qn

)
(4)

The previous update representation, from qn to qn+1 knowing the last reward rn and the number
of times that the action has been taken n, has the structure:

NewEstimation←− OldEstimation + α ·
[
Target−OldEstimation

]
(5)

The expression
[
Target−OldEstimation

]
denotes the error between the desired value and the

old estimation. The parameter α controls the rate in which the estimation value is updated, and
is often expressed as a function of the time step and the corresponding action, αt(a).

The distribution of reward probabilities has been assumed constant over time. In this scenario,
an equal weight of previous experience is reasonable, such as αt(a) = 1

n , which changes over time.
For non-stationary situations, the intuition suggests to increase the weights to recent experiences
and decrease the weights of old ones. Using a constant value α ∈ (0, 1] satisfies the desired property,
transforming Eq. 4 into a weighted sum of the past reward and past estimation :
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qn+1 = α · rn + (1− α) · qn (6)

By recursion, Equation 6 can be rewritten as a function of past rewards and the initial estimation
as:

qn+1 = (1− α)n · q1 +
n∑

i=1
α · (1− α)n−i · ri (7)

To guarantee convergence over time, we need α to satisfy both:
∞∑

t=1
αt(a) =∞ ,

∞∑
t=1

α2
t (a) <∞ (8)

where the former expression implies enough steps to overcome initial conditions, while the latter
expression implies a decrease in the step-size during learning to secure convergence. Note that
the latter expression is not met when alpha is set constant, a desired property in non-stationary
situations.

Until now, the learning process has focused on the estimation of the action values to maximize
a total reward. Either stationary or non-stationary, the value of each action has been assumed
unrelated to the context of learning. When the context is considered, the agent must learn how to
evaluate actions conditioned to different situations. The dynamic of learning in a agent-environment
framework is described in the following section.

2. The agent-environment framework

The interaction agent-environment is often discretized in time steps. Time steps are not required
to represent the formal time dimension but rather sequential decisions steps. Formally, at each
time step t = 0, 1, 2, 3, ..., T , the agent perceives the partial or complete state of the environment
st ∈ S and must take an action at ∈ A = {1, ..., |A|}, receiving a single reward rt+1 ∈ R ⊂ R and
modifying the environment into its next state st+1, as shown in Figure 1.

Environment

Agent

at

A
ct
io
n

R
ew

ard

rt+1

rt

State

st

st+1

Figure 1: Reinforcement learning, agent-environment interaction scheme.

An agent-environment interaction results into a sequence of events (trajectory) in the form:

s0, a0, r1, s1, a1, r2, s2, a2, ... (9)
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Whenever T , A, and R are finite subsets, the learning framework can be formally represented
and described as a finite Markov Decisions Process (MDP). In MDP, the entire system is charac-
terized by the mapping function from the pair [state, action] into [next state, reward]. Formally,
let s′, s ∈ S, r ∈ R, and a ∈ A, the probability p of transition from state s into s′ by taking action
a and receiving the reward r is written as:

p(s′, r|s, a) .= P (St+1 = s′, Rt+1 = r|St = s, At = a) ,
∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1 (10)

where p represents the dynamic of the entire MDP system. Therefore, the probability of choosing
an arbitrary action a depends only on the current state s and not on previous states.

Similar to the value estimation of an arbitrary action a in the non-associate task of Equation 7,
we need to estimate the value of taking an arbitrary action a at any state s, denoted as q(s, a).
The cumulative reward Gt, at time step t, can be expressed from Equation 9 into Equation 11 as:

Gt = rt+1 + rt+2 + · · ·+ rT (11)

with T as the final step. The previous formula works on finite oriented tasks in which the order
of rewards is irrelevant and the agent-environment interaction sequence is finite. In order to
make Equation 11 suitable for continuous oriented tasks or when the order of rewards matters, a
discounted factor γ ∈ [0, 1[ is introduced, such that the cumulative discounted reward is computed
as:

Gt ≈ rt+1 + γ · rt+2 + γ2 · rt+3 + γ3 · rt+4 + ... + γT −t−1 · rT =
T∑

k=0
γk · rt+k+1 (12)

From now on, we assume T →∞ without loss of generality. As the sequence of rewards depends
on the sequence of actions taken over the sequence of states, we look for an estimator of the pair
state-action, in terms of future rewards, to guide the agent. The agent acting behaviour on the
environment is referred as the agent’s policy.

Let π(a|s) be the probability of chosen action a at the state s under the agent’s policy π. The
state-value function, vπ(s), represents the expected total reward of the state s for policy π, and is
formally expressed as:

vπ(s) = Eπ
[
Gt

∣∣st = s
]
≈ Eπ

[ ∞∑
k=0

γk · rt+k+1
∣∣∣st = s

]
(13)

We define qπ(s, a) as the action-value function, corresponding to the expected return of taking
action a at state s under the policy π at time step t, and then following the same policy. It is
computed as:

qπ(s, a) = Eπ
[
Gt

∣∣at = a, st = s
]
≈ Eπ

[ ∞∑
k=0

γk · rt+k+1
∣∣∣at = a, st = s

]
(14)

Both, Equation 13 and Equation 14 can be estimated by previous experiences, similar to the
simple average-method described earlier, when the number of states and actions are small enough
to be stored and retrieved. When the space of action and/or state makes the store-and-retrieve
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process inefficient, vπ and qπ can be parametrized, reducing the number of parameters describing
the functions. When the space of actions and/or space become unmanageable or incomplete during
the process of learning, the use of deep neural network architectures serves to map State-Actions
with NextState-Rewards. The latter is referred as deep Q-Learning, and we elaborate on this
concepts in the following section. Before that, we introduce the concept of Bellman equations by
rewriting Equation 13 as:

vπ(s) = Eπ
[
rt+1 + γ ·Gt+1

∣∣st = s
]

vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
[
r + γ · Eπ

[
Gt+1

∣∣st+1 = s′]]
vπ(s) =

∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
[
r + γ · vπ(s′)

] (15)

The last expression translates into weighting each possible future response [r + γ · vπ(s′)] by
their probabilities of occurrence π(a|s)p(s′, r|s, a). In other words, it represents the value of a state
as a function of the possible immediate rewards and value states.

Similarly, Equation 14 can be rewritten as:

qπ(s, a) = Eπ
[
rt+1 + γ ·Gt+1

∣∣at = a, st = s
]
≈ Eπ

[
rt+1 + γ ·

∞∑
k=0

γk · r(t+1)+k+1

∣∣∣at = a, st = s

]
(16)

and by the principles of the Bellman equation, restated as:

qπ(s, a) = Eπ
[
rt+1 + γ · qπ(st+1, at+1)

∣∣at = a, st = s
]

(17)

We have from Equation 17 that the state-action value qπ(s, a) can be decomposed into the imme-
diate reward rt+1 of taking action a on the state s at time step t plus the discounted state-action
value function qπ(st+1, at+1) at the next time step t + 1, recursively.

3. Deep Q-Learning

The Q-Learning technique was proposed by Watkins and Dayan (1992) as a simple approach
for learning by successively improving the assessment of particular actions at particular states.
The action-value function in Q-Learning is updated according to the expression:

q(st, at)← (1− ε) · q(st, at) + ε ·
[
rt+1 + γ ·max

at+1
q(st+1, at+1)

]
(18)

where γ ∈ [0, 1[ and ε ∈ [0, 1] are the discount factor and learning coefficient. When ε : 1 the action-
value function is updated according to the received reward and discounted maximum action-value
at the next state. When ε : 0 the action-value is not updated. This resembles the trade-off between
exploration and exploitation. Indeed, we define an iteration as the moment when the agent has
interacted with the environment through the entire time period or until the interaction has ended.
Then, let εi be the epsilon value at the ith iteration, the εdecay parameter controls the rate between
exploration and exploitation as the training progresses, as εi+1 ← εi · εdecay. Figure 2 illustrates
the effects on εi by using εdecay : 0.99
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Figure 2: Epsilon greedy method. Exploration - exploitation dilemma.

The previous formulation requires to build a look-up table of size S × A × T for all possible
states (discrete), actions and time steps. Thus, the applicability of Q-Learning techniques has
been constrained by computational power and limited to low-dimensional state and action spaces.
In response, Mnih et al. (2015) proposed the Deep Q-Learning framework in which a deep neural
network is trained to approximate the function action-value function q(st, at). The latter directly
extends the state space from a discrete to a continuous space. An extended theoretical and statis-
tical analysis can be found at Fan et al. (2020). In the following, we focus on the main principles
of Deep Q-Learning. We rewrite Equation 17 as function of states-and-actions as:

qπ(st, at) = Eπ

[
r(st, at) + γ ·

∑
st+1∈S

p(st+1|st, at) max
at+1

qπ(st+1, at+1)
]

(19)

Solving Equation 19, the optimal policy π corresponds to:

π(s) = arg max
a ∈ A

q(s, a) (20)

The action-value function q(s, a) is approximated by a deep neural network (DQN) that out-
puts a set of action-values of the form qθ(s, ·) where θ corresponds to the set of neural network
parameters. The use of a DQN allows the implementation of two tricks that accelerate the learning
stage: replay memory and target network.

LetM be the set of experiences (memory set) stored in the form (st, at, rt+1, st+1). Let qθ∗(s, a)
be a target network. The learning process starts with an empty memory setM = ∅, random weights
on the network parameter θ, and initial state s0. The weights of the target network are initialized
as θ∗ = θ. At each iteration ith, we start from t = 0 until the interaction agent-environment ends.
At each time t, the following steps are carried out:

1. With probability εi a random action is selected, and with probability (1 − εi) the action is
selected by arg max

at ∈ A
qθ(st, at).

2. Once the action is executed, the immediate reward and the new state are stored in M.
3. Randomly draw n transition samples from M:

{
(sj , aj , rj , s′

j)
}

j ∈ [n]
4. For each sample, compute the target value yj = rj + γ · arg max

a ∈ A
qθ∗(s′

j , a)
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5. Update the network parameters using an optimization algorithm with a temporal learning
rate αt. For instance, using the gradient descent method:

θ ← θ − αt ·
1
n

n∑
j=1

[yj − qθ(sj , aj)] · ∇θqθ (21)

6. Every τ time steps, update the target network parameters as θ∗ ← θ.

As a result, after training, the optimal policy πθ(s) with respect to qθ(s, a) is obtained as:

πθ(s) = arg max
a ∈ A

qθ(s, a) (22)

4. Final remarks

We have covered the building blocks of reinforcement learning but many aspect have been
left aside for simplicity, such as temporal difference learning, On-policy and Off-policy, SARSA,
Monte Carlo tree search, exhaustive search, among others methods and principles. From the
revised fundamentals, special attention is suggested on the following aspects when applying deep
Q-Learning:

Environment representation To obtained valid, realistic and/or functional state-value and
action-value functions, the environmental must be adequately represented in such a way
that the agent is capable to interpret the differences between different states.

Reward The reward drives and guides the agent learning process. The reward must be in line
with the long-term goal and must avoid pitfalls in which the agent would maximize the total
reward without necessarily achieving the long-term goal.

Deep neural network The architecture of the network must be in accordance with the nature
of the environment (spatial-temporal). Ensemble architectures would improve the capacity
of approximating the action-value function in deep Q-Learning.
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Abstract

In mining operations, relations of cause and effect are not always clear and the
presence of spurious correlations further confuses the analysis of causal inferences.
In this article, we briefly review the principles of counterfactual analysis and the
study of causal inference for continuous variables using the Kolmogorov-Smirnov
test. The methodology is applied to study the impact of grade values and source
proportions on a SAG mill energy consumption. The approach can be applied
in any context, to understand the performance of a specific process as a function
of the input variables, and draw causal relationships that can be validated with
domain expertise.

1. Introduction

In mining operations, we often develop predictive models between a set of predictors to a single
response or a set of responses. The quality of such models relies on the quality of the measured
values of predictors and responses, and on the underlying relationships between them. It is well
known that correlation does not necessarily mean causation, and the presence of spurious corre-
lations further confuses the analysis of causal inferences. Thus, we can not rely on the predictive
models to answer what-if questions related to causal effects, since the former exploit linear and
non-linear correlations while the latter looks for counterfactual conditions.

The fields of counterfactual analysis and causal inference provide frameworks and principles
to formulate causal problem from a statistical perspective. They have been applied in several
other disciplines, such as pharmaceutical industry, sociological studies and epidemiology. It seems
natural to transfer the previous frameworks into the mining context, extending the current tools
of predictive modeling practitioners to deal with what-if questions.

In section 2 we present the fundamentals of counterfactual analysis. We focus the analysis to
continuous variables. In section 3 we define a simple methodology to determine the presence or
not of a cause-effect relation between the possible states of a response attribute conditioned to the
state of a predictor attribute. The method is applied in a mining context in section 4 studying the
impact on a SAG mill energy consumption of two grades and the proportion of three ore sources.
A final discussion is presented in section 5.

1Cite as: Avalos S, Ortiz JM (2021) Understanding process performance with causal inference for continuous
variables, Predictive Geometallurgy and Geostatistics Lab, Queen’s University, Annual Report 2021, paper 2021-03,
22-32.
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2. Background

Counterfactual theories of causation study conditional statements of the form if A were true,
then B would be true, and any variations, such as If A had not occurred, C would not have occurred
(Menzies and Beebee, 2020). The theoretical analysis of causation started with David Lewis’s
theory (Lewis, 1974). Since then, the field has expanded, refined and matured. Causal inference,
or causal modeling, is the state-of-the-art branch of counterfactual theory, providing mathematical
models and causal representations (Pearl et al., 2016).

The causal inference principle is that data alone is not enough to explain causality, and the story
behind the data elements is required. The story is formally conveyed into a graph representation,
with nodes representing the data elements, and edges the connections between them. The edges
and their directions form a direct graph that represents the underlying story of the data. A detailed
analysis on the graph structure and node’s connections can be found at Pearl et al. (2016).

The data and its associated direct graph provide the framework to deal with what-if questions
by means of interventions and conditioning. We intervene a variable when we fix its value. The
edges flowing in the nodes are removed. This modifies the original graph, and often changes the
value of subsequent nodes (Altinpinar and Ortiz, 2020). When conditioning on a variable, the
graph does not change but we rather focus on a subset of the original data, satisfying the node
condition. To draw reliable causal conclusions, the graph must be a valid representation of the
studied phenomenon.

The effects of interventions are analyzed by means of probability theory and statistical met-
rics. Formulas such as Controlled Direct Effect (CDE), Average Causal Effect (ACE), and test of
goodness-of-fit are some of the most used tools (Maldonado and Greenland, 2002). In the next
section, we describe how to build the direct graph and a particular test of goodness-of-fit, in the
context of mining and continuous variables.

3. Methodology

3.1. Causal model representation
The mining operational context and the expert knowledge on the expected relationship be-

tween variables must be reflected in the direct graph. First, all variables in the data must be
created as nodes. If one or more unmeasured variables must be considered, additional nodes to the
graph should be added. Then, connections must be drawn between nodes to represent the reality
based on expert knowledge, process flowcharts, and/or feasible cause-effect relations. The graph
representation and the applied interventions are the critical elements during causal analysis.

Assuming an adequate graph representation and that all variables have continuous values, we
proceed to conditioning on the nodes and not intervening on the graph by removing them. The
conditioning could be on a single variable, x, or a set of them, x1, x2, ..., by means of inequalities
over a specific value. It is reflected into conditional probabilities in the graph, such as P(x2 ≥ 0.7),
that translates into selecting a subset of the original data where x2 meets the condition. We study
the impact of a variable x1 on a variable x3 when x1 meets a certain criteria conditioning to an
additional variable x2. In other words, we study the difference between P(x3|x1) and P(x3|x1, x2).
The principle can be extended to more than two variables at a time.
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3.2. Two-sample Kolmogorov-Smirnov Test
The Kolmogorov-Smirnov test for goodness-of-fit (Massey Jr, 1951) is applied to the condi-

tional cumulative distributions functions on P(x3|x1) and P(x3|x1, x2), represented as empirical
distributions F1, n and F2, m, respectively, with n and m being the amount of samples in P(x3|x1)
and P(x3|x1, x2), respectively. The Kolmogorov–Smirnov statistic is defined as:

Dn,m = sup
x

|F1,n(x) − F2,m(x)| (1)

The null hypothesis states that samples on F1, n and F2, m are drawn from the same global
distribution. The null hypothesis is rejected at a level α when:

Dn,m > c(α)
√

n + m

n · m
(2)

where c (α) is computed as:

c (α) =
√

−0.5 · ln
(

α

2

)
· (3)

Back into the causal analysis, whenever the null hypothesis is rejected between P(x3|x1) and
P(x3|x1, x2), we say that x2 has a cause-effect on x3, conditioned to x1.

4. Case of study

4.1. Context
The previous methodology is applied in a simple open pit mining scenario. The run-of-mine

ore is fed to the processing plant from three different sources: A (sA), B (sB), and C (sC). The ore
is sent to a primary crusher, resulting in a blended material. This crushed blend is moved into a
SAG mill, through a conveyor belt, where the ore is further blended and reduced in particle size.
A contextual scheme is shown in Figure 1.

The SAG mill consumes a high amount of energy. As a driver for better short-term ore schedul-
ing, the decision makers are interested in measuring the impact that grade 1 (g1) and grade 2 (g2),
along with the proportion of sources in the blended ore, have on the SAG mill energy consumption
(EC).

Source A - sA (ton) 
Source B - sB (ton) 
Source C - sC (ton)

Grade 1 - g1 (%) 
Grade 2 - g2 (%) 

Energy consumption - EC (Mw)

Figure 1: Contextual scheme and the location of measured data.
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4.2. Database
A total of 250 daily measurements of the source tonnages (ton), grades (%), and energy con-

sumption (Mw) have been collected. Table 1 displays the database main statistics. A visualization
of the entire database time series is displayed in Figure 2. As we are interested in understanding
the influence of source proportions and grades on the SAG mill energy consumption, scatter plots
including their kernel density maps are shown in Figure 3. Note that we are not displaying the
EC against the source proportion. No clear correlation is shown on the tonnage per source, but a
slight positive correlation between EC and sC.
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Figure 2: Time series visualization of sources, grades, and energy consumption.
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Table 1: Database main statistics.

sA (ton) sB (ton) sC (ton) g1 (%) g2 (%) Energy consumption (Mw)
Min 2,479 0 0 0.26 0.24 6,000

Mean 25,968 33,744 33,048 6.98 10.59 34,161
Max 53,857 93,219 84,228 14.31 20.57 47,423

St Dev 10,792 16,429 20,160 2.55 3.56 6,940
Count 250 250 250 250 250 250

Figure 3: Scatter plots and kernel density maps of energy consumption against source tonnages and grades percentages.
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4.3. Analysis
The contextual setting of the problem is translated into a causal model representation (Fig-

ure 4). Here, we interrogate the causal model about the influence on both grades and source
proportion on the energy consumption.

Source

Grades Energy consumption

Figure 4: Causal model representation. Blue: impact of the grade on the energy consumption. Green: impact of the source
proportion on the energy consumption.

Let pX be the proportion of a source in the blended material. For instance p30 of sA means
that source A represents 30 % of the blended ore. Let pV be the V-percentile of a grade. For
instance p20 of Grade 1 refers to the 20-percentile value of the Grade 1 distribution. Using the
scheme of Figure 4 we have two possible pathways

Blue pathway Impact of grade on the energy consumption.
First, we select the subset of measurements in which a source is above a certain percentage.
For instance, in vector representation we write - Source A above an X %, as EC [sA > pX].
We compute the conditional cumulative distribution function (ccdf) of the resulting subset,
named ccdf 1.
Secondly, from the previous subset of measurements, we select an smaller subset of data with
grade values above a certain percentile. For instance, in vector representation we write -
Source A above an X % AND all Grade 1 above a percentile pV , as EC [sA > pX, g1 > pV ].
We compute the ccdf of the resulting subset, named ccdf 2.

Green pathway Impact of the source proportion on the energy consumption.
We start by selecting the measurements with grade values above a certain percentile. For
instance, in vector representation we write - All Grade 1 above a percentile pV , as EC [g1 >
pV ]. We compute the ccdf of the resulting subset, named ccdf 1.
Secondly, from the previous subset of measurements, we select the smaller subset of data in
which a source is above a certain percentage. For instance, in vector representation we write -
All Grade 1 above a percentile pV AND Source A above an X %, as EC [g1 > pV, sA > pX].
We compute the ccdf of the resulting subset, named ccdf 2.

Then, regardless of the pathway, we compute the pValue of the two-sample Kolmogorov-Smirnov
test for goodness-of-fit between ccdf 1 and ccdf 2. If the obtained pValue is above the critical value
α : 0.05, the null hypothesis is rejected, and therefore, the element (grade or source proportion)
has an impact on the energy consumption. We won’t compute the pValue if either the ccdf 1 or
ccdf 2 have less than 10 samples.
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4.4. Results
We begin by presenting the resulting ccdf 1 and ccdf 2 when analyzing both pathways (see

Figure 5). The distributions are conditioned on sC above p50 (50% in blended ore) and g1 above
p50 (grade values above the 50-percentile). When applying the K-S test, the null hypothesis is
accepted on Figure 5a and rejected on Figure 5b. This means that the test indicates that in the
former case, the values are drawn from the same distribution, while in the latter case, they come
from different distributions. In other words, the grade does not have a significant effect on the
energy consumption, while the source does.
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(a) Impact of grade on the EC.
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(b) Impact of the source proportion on the EC.

Figure 5: Conditional cumulative distribution functions. Conditioning on sC above p50 and g1 above p50.
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Figure 6: Impact of grade on the energy consumption. Grade 1 (top) and Grade 2 (bottom). Displaying the pValue of the
two-sample Kolmogorov-Smirnov test.
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Figure 7: Impact of grade on the energy consumption. Grade 1 (top) and Grade 2 (bottom). Thresholding the pValue of the
two-sample Kolmogorov-Smirnov test. Purple zone: accepting the null hypothesis. Red zone: rejecting the null hypothesis.

We extend the analysis to each grade and source. Grades are conditioned by percentiles while
the source proportions goes from [0, 1, ..., 99, 100]%. Figure 6 shows the pValue of the two-sample
K-S test of the grade impact on the energy consumption for g1 (top) and g2 (bottom). The white
areas correspond to insufficient amount of samples to compute the ccdf. By thresholding the maps
with α : 0.05 wherever the pValue is greater or equal to α, the Figure 7 is obtained.

0 50 100
Source - sA

0.26

7.01

14.31

Gr
ad

e 
- g

1

0 50 100
Source - sB

0.26

7.01

14.31

Gr
ad

e 
- g

1

0 50 100
Source - sC

0.26

7.01

14.31

Gr
ad

e 
- g

1

0 50 100
Source - sA

0.24

10.54

20.57

Gr
ad

e 
- g

2

0 50 100
Source - sB

0.24

10.54

20.57

Gr
ad

e 
- g

2

0 50 100
Source - sC

0.24

10.54

20.57

Gr
ad

e 
- g

2

Figure 8: Impact of the source proportion on the energy consumption. Grade 1 (top) and Grade 2 (bottom). Displaying the
pValue of the two-sample Kolmogorov-Smirnov test.
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Figure 9: Impact of the source proportion on the energy consumption. Grade 1 (top) and Grade 2 (bottom). Thresholding the
pValue of the two-sample Kolmogorov-Smirnov test. Purple zone: accepting the null hypothesis. Red zone: rejecting the null
hypothesis.

The analysis is repeated on the impact of source proportion on the EC. Figure 8 shows the
pValue of the corresponding two-sample K-S test for sA (left), sB (middle), and sC (right). The
white areas correspond to insufficient amount of samples to compute the ccdf. By thresholding the
maps with α : 0.05 wherever the pValue is greater or equal to α, the Figure 9 is obtained.

4.5. Final takeaways
The maps of Figure 7 and Figure 9 summarize the causalities of grades and sources proportions,

respectively. From them, the following key results are derived:

1. The Grade 1 (g1) influences the SAG mill energy consumption if and only if the value of
g1 is above the 80-percentile (10.9 %) AND the proportion of sA or sB are below 24 % and
22 %, respectively, regardless of the proportion of sC.

2. The Grade 2 (g2) has no influence on the SAG mill energy consumption, regardless of the
proportion of sources in the fed ore.

3. The proportion of Source A (sA) has no influence on the SAG mill energy consumption,
regardless of the grade values of g1 and g2.

4. The proportion of Source B (sB) has no influence on the SAG mill energy consumption,
regardless of the grade values of g1 and g2.

5. The proportion of Source C (sC) influences the SAG mill energy consumption if and only
if the proportion is above 46 %, regardless of the grade values of g1 and g2.

The previous key results can be transferred into operational decisions either to avoid falling
into areas where g1 or sC influence on the EC, or to expect EC variations when the conditions of
points 1 and 5 are met.
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5. Conclusions

Causal inference analysis has been widely applied in other disciplines, such as pharmaceutical
industry and sociological studies. Transferring the theoretical background and acquired knowledge
into mining operations is a fruitful area for applied research.

Data alone is not enough to explain causality. The story behind the variables is fundamental
for the causal analysis. It translates into a graph representation. The graph representation and
the interventions and/or conditioning must meet the real phenomenon and the what-if question
being asked.

The graph representation can be as simple as the case study shown in the article or much more
complex, when several processes and/or variables are considered. In addition, when testing the
null hypothesis for goodness-of-fit, we have used the Kolmogorov–Smirnov test but other methods
can be applied as well, such as Chi-squared test.

In the case study, and extrapolated to any causal inference analysis, causal models may indi-
cate the impact on the energy consumption of a certain setting between grade value and source
proportion but they do not describe if the change is positive or negative, meaning an increase or
decrease in the consumed energy.
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Abstract

The purpose of these notes is to give an understandable introduction to the
topology of random fields. To this end we detail simple proofs when their un-
derstanding is deemed essential for geostatisticians, and we omit complex proofs
that are too technical. Our principal effort will be in showing the main steps
in the proof for the expression that gives us the expected value of the Euler
characteristic, 𝜒, of the excursion sets 𝑍−1 [𝑢, +∞), of a smooth and isotropic
random field 𝑍 on R𝑁 restricted to a sub-manifold 𝑀, for the case in which 𝑍 is
a Gaussian field

E
[
𝜒
(
𝑀 ∩ 𝑍−1 [𝑢, +∞)

) ]
The principal motivation for this is the application of the concepts involved
behind the study of the Euler characteristic, in particular, to applications such
as the reconstruction of geological bodies. Figures will be employed in order to
illustrate some of the concepts.

1. Introduction

1.1. Road Map
We begin by giving a very rough description of the path that we are going to follow. All the

notions introduced here will be formalized in the later sections. Let us consider 𝑍 = {𝑍 (𝑥) : 𝑥 ∈
𝐷 ⊆ R𝑁 , 𝑁 ≥ 1} a Random Field (RF) defined on a fixed continuous domain of interest 𝐷 of the
Euclidean space R𝑁 . Here R denotes the set of all real numbers. The random field itself might
be real or vector valued, that is, it can take values in R𝑘 , for any 𝑘 ≥ 1. We find this type of
situations, for example, when we analyze any multi-element databases (Copper, Gold, Iron and
more, in different locations of the space). We will analyze, however, the case 𝑘 = 1. The domain
of interest 𝐷 that we want to tackle, as an introductory example, is a connected subset of R2. Let
us take a square domain 𝐷 = [0, 20]2. In summary, the RF may be defined in all R2, but will be
focused in the RF on R2 ∩ [0, 20]2 (Fig. 1, top), and the notation for this map is:

𝑍 : [0, 20]2 ⊂ R2 → R
𝑥 ↦→ 𝑍 (𝑥)

1Cite as: Alvaro I. Riquelme , Julian M. Ortiz (2021) Notes on the Topology of Random Fields, Predictive
Geometallurgy and Geostatistics Lab, Queen’s University, Annual Report 2021, paper 2021-04, 33-45.
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1.1.1. Modeling Geology from RFs
One of the common tricks used in geological modeling is to use the RF 𝑍 to obtain geological

bodies (or lithofacies). This is done by looking at the preimage of a given target subset 𝑇 ⊂ R of
values in the image of the map given by 𝑍, preim𝑍 (𝑇), where in this case

preim𝑍 (𝑇) := {𝑥 ∈ 𝐷 ⊆ R𝑁 | 𝑍 (𝑥) ∈ 𝑇}.

Note that it is not accurate to define geological bodies by looking at the inverse image of a given
set, since 𝑍 is not a bijection. However, since we are already aware of this subtlety, we are going
to do some abuse of notation and call 𝑍−1(𝑇) to the preim𝑍 (𝑇).

We let 𝑇 take different forms. If the interval is of the type 𝑍−1 [𝑢,∞), we call it the level set
𝑢, which is one of the most common image sets used (Fig. 1, bottom). Also 𝑇 can take the bit
more general form of an interval, [𝑎, 𝑏], with 𝑎 ≤ 𝑏, or in other cases, union (or finite intersection)⋃

𝑗∈𝐽 [𝑎 𝑗 , 𝑏 𝑗] (⋂ 𝑗∈𝐽 [𝑎 𝑗 , 𝑏 𝑗]) of ranges. Thus, we can build different geological bodies just by getting
some 𝑍−1 [𝑎, 𝑏).
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Figure 1: Example of a RF defined on R2 ∩ [0, 20]2 (top), and the process of defining a geological body by looking the set given
by R2 ∩ preim𝑍

(
[0, +∞)

)
.
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1.1.2. Triangulations and the Euler Characteristic
We notice, in particular, that 𝑍−1 [𝑢,∞) is a planar surface, or more specifically, it is formed

by the disconnected union of different planar surfaces, which may or may not possess holes inside.
By changing the threshold from 𝑢 to 𝑣, components of 𝑍−1 [𝑢,∞) may merge and new components
may be born, and possibly later merge with another of the components of 𝑍−1 [𝑢,∞), changing as
a result the geometry of the level set. We are interested in following these changes in the topology
of these sets, as a function of u. In order to achieve this objective, we need a measure that gives
us direct or indirect information about the number of disjoint component and holes in the set. For
this, the next step will be to define a triangulation on the level set 𝑢.

In the mathematical language triangulations of a set are referred as simplicial complex, and they
come with the notion of dimension within them, with each triangle called a simplex of dimension
𝑘. They can be open sets, or closed. Very roughly speaking, the linearly independent points of
the simplex are called vertices and the simplices spanned by subsets vertices called the faces. A
0-dimensional face of a simplex is also called a vertex. A 1-dimensional face of a simplex is also
called an edge.

Definition 1. The standard 0-simplex is the point 1 ∈ R This is also the standard open 0-simplex.

Definition 2. The standard 1-simplex is homeomorphic (a continuous bijection whose inverse is
also continuous) to an interval. See Figs. 2 and 3.

Definition 3. The standard 2-simplex is a “triangle” with vertices at (1, 0, 0), (0, 1, 0), and (0, 0, 1).
Figure 4 depicts a 2-simplex.

Definition 4. The standard 3-simplex is a tetrahedron with vertices at (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0),
and (0, 0, 0, 1). Figure 5 depicts a 3-simplex.

Figure 2: The standard 1-simplex.

Figure 3: A 1-simplex.

Definition 5. A 0-simplex has only itself as a face.

Definition 6. The standard 1-simplex [𝑣0, 𝑣1] (and hence all 1-simplices) has itself as a 1-dimensional
face. It also has two 0-dimensional faces, [𝑣0] and [𝑣1].
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Figure 4: A 2-simplex.
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Two dimensional torus: β0 = 1,
β1 = 2, β2 = 1, β3 = 0

Figure 5: A 3-simplex.

Definition 7. A 2-simplex has one 2-dimensional, three 1-dimensional, and three 0-dimensional
faces.

Definition 8. A 3-simplex has one 3-dimensional, four 2-dimensional, six 1-dimensional, and
four 0-dimensional faces.

The notion of triangulation is formalized by defining the concept of simplicial complex, which
is basically a map from the space of simplices to the topological target space, in our case the set
𝑍−1 [𝑢,∞). For examples of simplicial complexes, see Figs 6, 7, and 8.

The idea now is to cover the space 𝑍−1 [𝑢,∞) with a triangulation that approximately covers
this set (Fig. 9). Then, one can proceed to compute the Euler Characteristic of our given set.

Definition 9. The Euler characteristic of a finite simplicial complex 𝐾 of dimension 𝑘 is computed
via the following formula:

𝜒(𝐾) =
𝑘∑︁
𝑖=0

(−1)𝑖#{simplices of dimension 𝑖 in K}

In the case of a surface or a 2-dimensional simplicial complex 𝐾, the Euler characteristic (EC)
is given by 𝜒(𝐾) = 𝑉 − 𝐸 + 𝐹, with vertices (V), edges (E), and faces (F). We notice that the EC
takes values on the integers, i.e, 𝜒(𝐾) ∈ Z.

We will come back to this topics to cover more details and more general notions for Euler char-
acteristic in the following sections, for instance, to show that the Euler characteristic is independent
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Figure 6: A 1-dimensional simplicial complex.

Figure 7: A 2-dimensional simplicial complex.

on the triangulation imposed to the set 𝐾, and also invariant under continuous deformations of the
set.

Finally, taking several realizations of RFs 𝑍, now we are able to compute

E
[
𝜒
(
𝐷 ∩ 𝑍−1 [𝑢, +∞)

) ]
1.1.3. Enters Morse Theory

Theoretical computations by counting the number of vertices, edges, and faces, although very
intuitive and easy to follow, can not lead us too far. Indeed, it is a very primitive approach to the
problem and we will have to leave it rapidly, specially since it is not clear yet how to relate directly
the concept of triangulation and RFs. We will take in stead an indirect approach to the problem.

Morse Theory investigates how functions defined on a surface 𝑀 (and manifolds, which are a
generalization of the concept of surface, for higher dimensions) are related to geometric aspects of
the surfaces. Surfaces are easy to visualize, and all the essential points of the theory readily appear
in the case of surfaces.

1.1.3.1. Critical points of functions.
Let us consider a function 𝑧 = 𝑓 (𝑥) in one variable. We assume that both 𝑥 and 𝑦 are real numbers.
A point 𝑥0 which satisfies

𝑓 ′(𝑥0) = 0

is called a critical point of the function 𝑓 . The points at which 𝑓 takes its maximum or minimum
values, and the inflection point of 𝑦 = 𝑥3, are examples of critical points. The critical points of
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Figure 8: A 3-dimensional simplicial complex.

𝑓 fall in two classes according to the values of the second derivative of 𝑓 , 𝑓 ′′(𝑥0). We call 𝑥0 a
non-degenerate critical point if 𝑓 ′′(𝑥0) ≠ 0, and a degenerate critical point if 𝑓 ′′(𝑥0) = 0.

1.1.3.2. Hessian.
We now move to a real-valued function

𝑧 = 𝑓 (𝑥, 𝑦)

of two variables, where 𝑥 and 𝑦 are both real numbers. We may think of a pair (𝑥, 𝑦) of real
numbers as a point in the 𝑥𝑦-plane. In this way 𝑓 becomes a function defined on the plane, which
assigns a real number to each point in the plane. We can visualize the graph of this function in
the 3-dimensional space with three orthogonal axes 𝑥, 𝑦, 𝑧 = 𝑓 (𝑥, 𝑦).

Definition 10. (Critical points of functions of two variables). We say that a point 𝑝0 = (𝑥0, 𝑦0)
in the 𝑥𝑦-plane is a critical point of a function 𝑧 = 𝑓 (𝑥, 𝑦) if the following conditions hold:

𝜕 𝑓

𝜕𝑥
(𝑝0) = 0, 𝜕 𝑓

𝜕𝑦
(𝑝0) = 0.

We assume in this definition that the function 𝑓 (𝑥, 𝑦) is of class 𝐶∞ (differentiable to any desired
degree). Such a function is also called a 𝐶∞-function or a smooth function.

Example 1. The origin 0 = (0, 0) is a critical point of each of the following three functions:

𝑧 = 𝑥2 + 𝑦2, 𝑧 = 𝑥2 − 𝑦2, 𝑧 = 𝑥2 − 𝑦2

(see Fig. 11)

Now we need to define non-degenerate and degenerate critical points for functions of two vari-
ables. The reader may be tempted to define a critical point 𝑝0 to be non-degenerate if it satisfies

𝜕2 𝑓

𝜕𝑥2 (𝑝0) ≠ 0, 𝜕2 𝑓

𝜕𝑦2 (𝑝0) ≠ 0. (1)
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Figure 9: Example of triangulation defined on R2 ∩ preim𝑍

(
[0, +∞)

)
for a given RF 𝑍.

This is, in fact, a “bad definition”, since after some coordinate changes, the condition (1) would
no longer hold for the same 𝑓 and 𝑝0 in general. We want the concept of non-degenerate critical
points or that of degenerate critical points to be independent of choice of coordinates. The following
definition satisfies this requirement.

Definition 11. (i) Suppose that 𝑝0 = (𝑥0, 𝑦0) is a critical point of a function 𝑧 = 𝑓 (𝑥, 𝑦). We call
the matrix ©«

𝜕2 𝑓

𝜕𝑥2 (𝑝0)
𝜕2 𝑓

𝜕𝑥𝜕𝑦
(𝑝0)

𝜕2 𝑓

𝜕𝑦𝜕𝑥
(𝑝0)

𝜕2 𝑓

𝜕𝑦2 (𝑝0)

ª®®®®®¬
,

of second derivatives evaluated at 𝑝0, the Hessian of the function 𝑧 = 𝑓 (𝑥, 𝑦) at a critical point 𝑝0,
and denote it by 𝐻 𝑓 (𝑝0).

(ii) A critical point 𝑝0 of a function 𝑧 = 𝑓 (𝑥, 𝑦) is non-degenerate if the determinant of the
Hessian of 𝑓 at 𝑝0 is not zero; that is, 𝑝0 is non-degenerate if we have the following:

det 𝐻 𝑓 (𝑝0) =
𝜕2 𝑓

𝜕𝑥2 (𝑝0)
𝜕2 𝑓

𝜕𝑦2 (𝑝0) −
(
𝜕2 𝑓

𝜕𝑥𝜕𝑦
(𝑝0)

)2
≠ 0.

On the other hand, if det 𝐻 𝑓 (𝑝0) = 0, we say that 𝑝0 is a degenerate critical point.

Notice that the matrix 𝐻 𝑓 (𝑝0) is a symmetrix matrix, since 𝜕2 𝑓

𝜕𝑥𝜕𝑦
(𝑝0) =

𝜕2 𝑓

𝜕𝑦𝜕𝑥
(𝑝0).
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Figure 10: The EC of the two-dimensional sphere is 𝜒 (S2 ) = 𝑉 − 𝐸 + 𝐹 = 6 − 12 + 8 = 2 and of the the two-dimensional torus
𝜒 (T2 ) = 𝑉 − 𝐸 + 𝐹 = 9 − 27 + 18 = 0.

Figure 11: The graphs of 𝑧 = 𝑥2 + 𝑦2, 𝑧 = 𝑥2 − 𝑦2 and 𝑧 = 𝑥2 − 𝑦2, respectively from the left.

Example 2. Let us compute the Hessian for each of the three functions in Example 1 evaluated
at the origin 0.
(i) For 𝑧 = 𝑥2 + 𝑦2, the Hessian at the origin is(

2 0
0 2

)
.

(ii) For 𝑧 = 𝑥2 − 𝑦2, the Hessian at the origin is(
2 0
0 −2

)
.

(iii) For 𝑧 = −𝑥2 − 𝑦2, the Hessian at the origin is(
−2 0
0 −2

)
.

The determinant of each of these matrices is not zero, and hence the origin 0 is a non-degenerate
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critical point for each of the three functions.

Example 3. Consider the function 𝑧 = 𝑥𝑦. The origin 0 is its critical point. The Hessian at 0 is(
0 1
1 0

)
,

and its determinant is not zero; hence, the origin 0 is a non-degener.ate critical point. In fact, the
function 𝑧 = 𝑥𝑦 is obtained from 𝑧 = 𝑥2 + 𝑦2 by a coordinate change.

Example 4. The origin 0 is a critical point of the function 𝑧 = 𝑥2 + 𝑦3, but the Hessian of this
function at 0 is (

2 0
0 0

)
,

whose determinant is zero. Thus 0 is a degenerate critical point of 𝑧 = 𝑥2 + 𝑦3.

Now we proceed to state our first theorem.

Theorem 1. (The Morse lemma) Let 𝑝0 be a non-degenerate critical point of a function 𝑓 of two
variables. Then we can choose appropriate local coordinates (𝑥′, 𝑦′) in such a way that the function
f expressed with respect to (𝑥′, 𝑦′) takes one of the following three standard forms:

(i) 𝑓 = 𝑥′2 + 𝑦′2 + 𝑐 (2)
(ii) 𝑓 = 𝑥′2 − 𝑦′2 + 𝑐 (3)

(iii) 𝑓 = −𝑥′2 − 𝑦′2 + 𝑐 (4)

where 𝑐 is a constant
(
𝑐 = 𝑓 (𝑝0)

)
and 𝑝0 is the origin

(
𝑝0 = (0, 0)

)
in the new coordinates.

This theorem says that a function looks extremely simple near a non-degenerate critical point:
for a function of two variables, a suitable coordinate change will make it one of the three simple
functions we saw in Example 1.

Definition 12. (Index of a non-degenerate critical point). Let 𝑝0 be a non-degenerate critical
point of a function 𝑓 of two variables. We choose a suitable coordinate system (𝑥, 𝑦) in some
neighborhood of the point 𝑝0 so that the function 𝑓 has a standard form given by Theorem 1. Then
we define the index of the non-degenerate critical point 𝑝0 of 𝑓 to be 0, 1 and 2, respectively for
𝑓 = 𝑥2 + 𝑦2 + 𝑐, 𝑓 = 𝑥2 − 𝑦2 + 𝑐 and 𝑓 = −𝑥2 − 𝑦2 + 𝑐. In other words, the number of minus signs in
the standard form is the index of 𝑝0.

We see immediately from the respective graphs (Fig 11) of the functions 𝑓 = 𝑥2 + 𝑦2, 𝑓 = 𝑥2 − 𝑦2

and 𝑓 = −𝑥2 − 𝑦2 that if the point 𝑝0 has index 0, then 𝑓 takes a minimum value at 𝑝0. If the
index of 𝑝0 is 1, then in some neighborhood of 𝑝0, 𝑓 may take values strictly larger than 𝑓 (𝑝0) or
it may take values strictly smaller than 𝑓 (𝑝0). If the index of 𝑝0 is 2, then 𝑓 takes a maximum
value at 𝑝0. Thus the index of a non-degenerate critical point 𝑝0 is determined by the behavior of
𝑓 near 𝑝0.
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1.1.3.3. Morse functions on surfaces.
In the previous sections we limited ourselves to “local” investigation of critical points in their
neighborhoods. We now turn to a “global” investigation which involves the shape of a space as a
whole. In this section we consider two-dimensional spaces; that is, surfaces.

Some examples of closed surfaces were depicted in Fig. 10 and Fig. 12: a sphere and a torus
in Fig. 10, and closed surfaces of genus two and three in Fig. 12. By the genus of a closed surface
we mean the number of “holes” in it. The genus of a torus is one and that of a sphere is zero. We
consider a closed surface of genus 𝑔 for any natural number g. If one thinks of a torus as a “float”,
then one might think of a surface of genus two as a “float for two persons”. Similarly we may think
of a surface of genus 𝑔 as a “float for 𝑔 persons”.

Figure 12: Closed surfaces of genus 2 and genus 3.

We denote the sphere by S2. The superscript 2 represents the dimension of the sphere. We
denote a torus by T2 . We often denote by Σ𝑔 the closed surface of genus 𝑔, and in this case Σ0
and Σ1 are nothing but a sphere S2 and a torus T2, respectively.

Let 𝑀 be a surface. We call a map
𝑓 : 𝑀 → R,

which assigns a real number to each point 𝑝 of 𝑀, a function on 𝑀. Notice that a surface is curved,
so that local coordinates on it are also curved in general (cf. Fig. 13).

0

Figure 13: A local coordinate system on a surface.

We say that a function 𝑓 : 𝑀 → R defined on a surface 𝑀 is of class 𝐶∞ (or smooth) if it is
of class 𝐶∞ with respect to any smooth local coordinates at each point of 𝑀. The concept of a
“critical point” we saw in the previous section carries over to a function 𝑓 : 𝑀 → R defined on a
surface 𝑀 with the aid of local coordinates. More precisely we say that a point 𝑝0 of a surface 𝑀

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 42



is a critical point of a function 𝑓 : 𝑀 → R if

𝜕 𝑓

𝜕𝑥
(𝑝0) = 0, 𝜕 𝑓

𝜕𝑦
(𝑝0) = 0. (5)

with respect to local coordinates in some neighborhood of 𝑝0. We saw in the first section that non-
degenerate critical points are stable and have some convenient properties in contrast to degenerate
critical points. Therefore the functions on a surface with only non-degenerate critical points would
be nice ones. Based on this consideration, we define

Definition 13. (Morse functions). Suppose that every critical point of a function 𝑓 : 𝑀 → R on
𝑀 is non-degenerate. Then we say that 𝑓 is a Morse function.

1.1.3.4. Critical points and the EC.

Let us come back to the example on which the surface 𝑀 is the sphere or the torus. We consider
the unit sphere S2 with the orthogonal coordinates (𝑥, 𝑦, 𝑧) in three-dimensional space R3; that is,
S2 is defined by the equation

𝑥2 + 𝑦2 + 𝑧2 = 1.

Let

𝑓 : 𝑀 ⊂ R3 → R
(𝑥, 𝑦, 𝑧) ↦→ 𝑧

be the nice function on S2 which assigns to each point 𝑝 = (𝑥, 𝑦, 𝑧) on S2 its third coordinate 𝑧. One
might say that 𝑓 is the “height function”. Then 𝑓 is a Morse function, with two critical points;
the north pole 𝑝0 = (0, 0, 1) and the south pole 𝑞0 = (0, 0, 1) (Fig. 14). One easily sees that 𝑓 has
no other critical points, and in fact, it is a lemma that for a Morse function defined on a closed
surface has only a finite number of critical points.

Now we are ready to state one of the most striking results, and which relates the number of
critical points and the EC.

Theorem 2. (The Morse theorem) Let 𝑓 : 𝑀 → R be a Morse function on a compact manifold 𝑀
of dimension 𝑛, and denote by 𝑘𝜆 the number of critical points of 𝑓 with index 𝜆. Then the Euler
characteristic of 𝑀 is given by:

𝜒(𝑀) =
𝑛∑︁

𝜆=0
(−1)𝜆𝑘𝜆 (6)

The intuition behind achieving this theorem, in a very rough and informal fashion, is that
we can build our compact surface 𝑀 by attaching our nice graphs function of Fig. 11 one by
one, and using continuous deformations, until we get the surface 𝑀, in what is called a “handle
decomposition”. The graphs function of Fig. 11 are particular cases of “handles”. During this
process of construction, the important geometrical changes (the topological ones) appear when the
continuous deformations are close to some critical point (Fig. 15).

In order to use this theorem, we will need to study under which conditions the RFs that we will
making use of have the property of being Morse functions with probability one. This will be one
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Figure 14: The height function and their gradient of the surface of S2 and T2. The sphere has 2 critical points (north and
south pole): one of index 0 and another one of index 2. Therefore, 𝜒 (S2 ) = 1 · 1 − 1 · 0 + 1 · 1 = 2. The torus has 4 critical
points: one of index 0, two of index 1, and another one of index 2. Therefore, 𝜒 (T2 ) = 1 · 1 − 1 · 2 + 1 · 1 = 0.

->
->

->

Figure 15: Building a torus by attaching “handles” to the previous ones and using continuous deformations.

of the technical issues that we must address on the second part these notes. Once this has been
established, we will proceed with the following trick. We are going to use the value of the RF in
our planar surface of Fig. 1 as both height and as a Morse function, i.e., 𝑓 = 𝑍.

After establishing the mentioned technical issues and others, the problem of finding the EC of
the RF 𝑍 is basically reduced to find the number 𝑘𝜆 of points 𝑝 ∈ 𝐷 for which:

(i) the RF 𝑍 at 𝑝 is above the desired threshold 𝑢, i.e., 𝑍 (𝑝) ≥ 𝑢;

(ii) the RF 𝑍 at 𝑝 is also a critical point, i.e.,

𝜕𝑍

𝜕𝑥
(𝑝) = 0, 𝜕𝑍

𝜕𝑦
(𝑝) = 0;

(we summarize this condition by writing 𝑑𝑍 = 0)

(iii) the index of the non-degenerate critical point 𝑝, for which we are going to see that is a
function of the Hessian of 𝑍 (more precisely, equal to the number of negative eigenvalues of
the Hessian of 𝑍), i.e., the index

(
𝐻𝑍 (𝑝)

)
is equal to 𝜆.
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Figure 16: Schematic showing the trick used to find 𝜒
(
𝑍−1 [𝑢, +∞)

)
: to use the RF 𝑍 as the height function in order to find

critical points above the threshold 𝑢.

Then, we would like to use the Morse theorem for one realization of 𝑍 to find the value of the EC

𝜒
(
𝑍−1 [𝑢, +∞)

)
=

𝑛∑︁
𝜆=0

(−1)𝜆#{𝑍 > 𝑢, 𝑑𝑍 = 0, index
(
𝐻𝑍

)
= 𝜆}.

Sadly, this will not be possible, but taking the expected value on both sides will be, in order to
obtain first E

[
𝜒
(
𝑍−1 [𝑢, +∞)

) ]
. The continuation of these notes is devoted to finding the expected

values on the right hand side (RHS). By working a bit more, we are going to be able to find
E
[
𝐷 ∩ 𝜒

(
𝑍−1 [𝑢, +∞)

) ]
.
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Application of Disjunctive Kriging in Sequential Simulation1 
David Casson (3drc1@queensu.ca) 

Julian M. Ortiz (julian.ortiz@queensu.ca) 

Abstract 
Quantifying uncertainty in ore body modelling improves economic outcomes from 
mine development and operation. Simulation is a frequently utilized technique in 
geostatistics providing information on the level of uncertainty associated with 
estimated ore body properties at unsampled locations, both individually and in 
aggregate. Available simulation techniques do not allow for informed application of a 
random function model relying instead on: i) the assumption that the random function 
is MultiGaussian (as in sequential Gaussian simulation), ii) no assumption on the 
random function model (as in sequential indicator simulation), or iii) brute force 
inference of higher order statistics (multipoint simulation with machine learning). 
Disjunctive Kriging utilizes polynomial expansions of random function families to 
estimate parameters at unsampled locations. An algorithm has been developed to 
apply Disjunctive Kriging in sequential simulation using the Hermitian expansion of a 
Gaussian random function. Using the same conditioning information, simulation results 
closely match those from sequential Gaussian simulation. This suggests applying the 
algorithm with non Gaussian random function families and associated polynomial 
expansions will provide a valuable sequential simulation tool. 

 

1. Introduction 

1.1. Context in Mineral Resource Estimation 
 

Traditionally, the qualified person completing a Mineral Resource estimate applied kriging to arrive 

at a best estimate for mineral resource grade and tonnage. Kriging is a deterministic method unable to 

provide a relevant measure of uncertainty associated with its deterministic estimates. The qualified 

person would classify the mineral resource as measured, indicated, or inferred based on personal 

experience and industry association guidance related to drill hole spacing and deposit type. For example, 

in a copper porphyry setting drills holes of a certain spacing might result in indicated resources, while drill 

holes at slightly greater spacing would be inferred. These specific spacings differ depending on the type 

of ore body and geological setting. 

Simulation provides a quantification of uncertainty in resource modelling. This allows an estimator to 

arrive at a quantitative view of how probable it is that a given block has a given value (e.g., probability 

that grade of block is above cut off). This probabilistic estimate of uncertainty can be carried through the 

 
1 Cite as: Casson D., Ortiz J. M. (2021) Application of Disjunctive Kriging in Sequential Simulation, Predictive 
Geometallurgy and Geostatistics Lab, Queen’s University, Annual Report 2021, paper 2021-05, 46-60. 
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mine design and operation to make better decisions, understanding the range of possible operational and 

financial outcomes and associated likelihood.  

Simulation infers the properties of the regionalized variable under study based on the available data 

samples. The accuracy of the resulting simulations as a predictor of outcomes and probabilities depends 

entirely on how well the inferred model matches the true properties of the regionalized variable. Said 

simply, the appropriateness of the chosen model for the variable under study will dictate the accuracy 

and usefulness of simulation results. 

1.2. Traditional Simulation Techniques 
 

Commonly applied simulation techniques include Sequential Gaussian Simulation and Sequential 

Indicator Simulation. As is described further below, both these sequential simulation methods require a 

random draw from an estimated Conditional Cumulative Distribution Function (“CCDF”) at unsampled 

locations. The CCDF, which is based on information in a neighborhood deemed to be relevant, reflects the 

probability that the unknown value at the location in question is below any value in its possible range. 

Simulation will not be successful if the CCDF is not accurate. Sequential Gaussian Simulation relies on the 

assumption that the regionalized variable under study is Multigaussian in nature. This is often not true. 

Simulation will also not be successful if it is not practical to implement. Sequential Indicator Simulation 

makes no assumption on the model of the variable under study but requires computation and modelling 

of many indicator variograms which makes it a cumbersome approach and challenging to implement in 

practice.  

The assumption of MultiGaussianity provides the theoretical basis for many methods in geostatistics. The 

specific indicator properties of a multipoint (multivariate) Gaussian variable (i.e., indicator variogram) can 

be used to define a Gaussian function for the local CCDF. These Gaussian local distribution functions 

determine the probabilities of potential values at the unsampled locations, providing a measure of “local” 

uncertainty. Sequential Gaussian Simulation (“SGS”) extends this approach to estimate global uncertainty 

amongst a population of unsampled locations, applying Monte-Carlo simulation along with the inferred 

local Gaussian CCDF’s at unsampled locations to arrive at a simulated point value. Sequential simulation 

takes a random path through unsampled locations and once a simulated value is determined at a given 

location, it is assumed fixed and incorporated into the CCDF’s for subsequently simulated unsampled 

locations. Repeating this sequential simulation provides multiple potential realizations of the unsampled 

locations creating, in aggregate, a measure of uncertainty of the entire unsampled set of locations. Such 

an approach is applied to create a measure of uncertainty related to grade and tonnage estimates, e.g., 

the probability across 1000 simulations that a given block is ore or waste. 

The Gaussian approach described above is in contrast to the indicator approach applied in Sequential 

Indicator Simulation (“SIS”) which makes no assumption regarding model function or parameters. While 

the indicator approach can account for non-symmetric distributions and/or non-diffusive distributions, it 

has several limitations described below (Machuca-Mory et al 2008): 

• Discretization and interpolation of the conditional CDF creates error. 
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• Cokriging of indicator thresholds (which is theoretically required) is not practical with a linear model 

of co-regionalization (challenging to limit cross and direct indicator variograms to linear combinations 

of specified families of models). 

• Tail behavior is difficult to model given sparse relevant data points. 

The steps to sequential Gaussian simulation are described below. 

1. Decluster data to get representative distribution; 
2. Transform data to normal scores, based on the representative distribution; 
3. Visit nodes in a random path; 
4. At every node, search for nearby samples or previously simulated nodes; 
5. Krige the normal scores using samples and nodes (this requires the variogram model of the normal 

score transform of the original variable); 
6. Draw a value from the conditional distribution; 
7. Back transform the simulated value. 

The figure below adapted from Ortiz (2019) illustrates the key steps in SGS simulation. 

 

Normal scores of declustered sample values

σ

μ

Location to be simulated

Kriging neighborhood

Determining and sampling the conditional 

distribution at unsampled location
Simple Kriging Value 

Simple Kriging Variance 

Monte Carlo: draw a 

random number 

between 0 and 1; this is 

the assume CDF value
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Sequential indicator simulation is non-parametric in nature. No assumptions are made regarding the bi-

variate distribution.  

The steps to sequential indicator simulation are described below. 

1. Visit nodes in a random path; 
2. At every node, search for nearby samples or previously simulated nodes; 
3. Select a number of threshold values for the variable in question;  
4. For each threshold: 

a. Code nearby known or simulated data points as “1” or “0” if they are below of above the 
threshold respectively; 

b. Apply simple kriging to these values (requires a variogram fit to the indicator data points); 
c. Result is probability that value at unsampled location is below the threshold; 

5. Interpolate the threshold-probability data points into a CDF curve; 
6. Draw a value from the conditional distribution. 

The figure below adapted from Ortiz (2019) illustrates the interpolation approach to modelling the CCDF 

using indicator kriging. 

 

  

1.3. Polynomial Expansions for Modelling Probability Density Functions and Cumulative 

Density Functions 
 

Determination of local conditional Probability Density Functions (“PDF’s”) is an important component of 

modern geostatistics. Conditional PDF’s (and corresponding Cumulative Distribution Functions or “CDF’s”) 

allow for simulation of an attribute at an unsampled location conditioned to the available and relevant 

data. The sequential simulation technique relies on a random draw from the CCDF at the unsampled 

location.  

Asymptotic expansions are a mathematical technique for approximating a function with finite variance by 

a weighted average of a family of functions related to a “developing distribution function” or random 

function family. This type of mathematical formulation can be applied to model CDF’s in situations where 

suitable developing distribution functions are selected. 
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In the first part of the twentieth century, significant research was completed on approximating empirical 

distributions with theoretical functions. In many cases, this work focused on the use of asymptotic 

expansions, in which the error of the approximation approaches zero as a parameter (the order) of the 

expansion approaches infinite (Wallace, 1958). The premise upon which these expansions are based is 

found in the Charlier Differential Series.  

A random function is completely described by its moments. For any random function, the moments can 

be defined with the moment generating function shown below.  

 
𝑀𝑋(𝑡) =  𝐸[𝑒𝑡𝑋]      (1) 

In a similar manner to the Moment Generating Function, a random variable and its distribution can be 

defined by its Characteristic Function “f(t)” or sometimes “φ(t)”. The Characteristic Function is similar to 

the Moment Generating Function. It resembles a Fourier Transform (but in complex conjugate) of the 

underlying random variable’s PDF. The expression is shown below. 

 
𝜑𝑋(𝑡) =  𝐸[𝑒𝑖𝑡𝑋]      (2) 

 

Cumulants are similar but not identical to moments. A random variable can be completely described by 

its cumulants or its moments. The cumulants are defined by the Cumulant Generating Function, which is 

the natural logarithm of the characteristic function. As a result, the characteristic functions can be written 

as the natural exponent of the cumulant generating function. This is shown below for a characteristic 

function “f(t)”. 

𝑓(𝑡) =  𝑒
[∑ 𝜅𝑟

(𝑖𝑡)𝑟

𝑟!
∞
𝑟=1 ]

      (3) 

Using the above expression for both an empirical characteristic function f(t) and a chosen theoretical 

characteristic function ψ(t), an expression may be defined to relate the theoretical and empirical 

characteristic functions in terms of the difference between cumulants of each (κr and γr respectively) as 

shown below.  

𝑓(𝑡) =  𝑒
[∑ (𝜅𝑟−𝛾𝑟)

(𝑖𝑡)𝑟

𝑟!
∞
𝑟=1 ]

𝜓(𝑡)     (4) 

If the PDF of the chosen theoretical distribution (random function family) referred to here as Ψ(x) and all 

of its derivatives are continuous and have finite variance (i.e., vanish in the extremes but are continuous 

otherwise), integration by parts is possible and therefore expression of the two PDF’s (theoretical and 

empirical) based on the difference between the cumulants is possible. This is shown below where “D” is 

the differential operator and comes from the integral relationship between probability distribution 

functions and associated characteristic functions.  

𝐹(𝑥) =  𝑒
[∑ (𝜅𝑟−𝛾𝑟)

(−𝐷)𝑟

𝑟!
∞
𝑟=1 ]

𝛹(𝑥)     (5) 
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By selecting a family of theoretical distributions with finite variance, we can create an expansion of the 

probability distribution function to be approximated based on the derivatives of the theoretical PDF (and 

associated CDF) selected and the differences between observed and theoretical cumulants. As noted by 

Mustapha and Dimitrakopolous (2010) “it is relatively easy in many statistical situations to determine 

moments, but it is extremely hard or impossible to determine the distributions themselves”.  

 

1.4. Review of Hermitian Polynomial Expansion 
 

The Edgeworth Approximation is a specific case of an asymptotic expansion, where the theoretical 

distribution function is selected to be the normal distribution (which satisfies the criteria of finite 

variance). In choosing the normal distribution we are not assuming that the empirical distribution to be 

modelled is truly Gaussian, we are simply choosing the normal distribution to base our expansion on. If 

the empirical were perfectly Gaussian then no expansion would be needed to write the empirical PDF in 

terms of the theoretical Gaussian PDF. Intuitively the closer the empirical distribution is to the theoretical 

the “better” the expansion should be (i.e., how close the expansion approximates the theoretical 

distribution for any given truncation of the expansion series). Once the choice of the Gaussian distribution 

is made for the theoretical developing function, the relationship between the cumulants can be further 

defined based on the theoretical cumulants of the normal distribution. The mean and variance of the 

empirical and theoretical distribution functions are set equal resulting in an expansion based on the 

difference of the higher order cumulants. The higher order cumulants of the theoretical normal 

distribution are zero which further simplifies the equation to depend only on higher order cumulants of 

the empirical distribution. The empirical cumulative distribution function to be approximated can be 

written as an expansion of a polynomial and the derivatives of the normal distribution as shown in the 

equation below based on the observed cumulants of the empirical distribution. Here the λ values are 

derived from the observed cumulant values of each order in the empirical data set. 

𝐹𝑛(𝑥) =  ф(𝑥) − 
𝜆3ф3(𝑥)

−6√𝑛
+ 

1

𝑛
 [

𝜆4ф4(𝑥)

24
+

𝜆3
2ф6(𝑥)

72
] + ⋯         (6) 

Given the unique relationship between the normal distribution and its derivatives, and its well-known 

representation in Hermite Polynomials, the Edgeworth Approximation can be rewritten as a function of 

Hermite Polynomials, h(n)(x), which is shown below for an expansion up to order 6.  

𝑒4(𝑥) =  𝜙(𝑥) [1 +
𝜅3ℎ3(𝑥)

6√𝑛
+

𝜅4ℎ4(𝑥)

24𝑛
+

𝜅3
2ℎ6(𝑥)

72𝑛
]         (7) 

The Hermite Polynomial of order n, h(n)(y), is defined in the below equation where g(y) is the standard 

gaussian pdf function.  

𝐻𝑛(𝑦) =  
1

√𝑛! 𝑔(𝑦)

𝑑𝑛𝑔(𝑦)

𝑑𝑦𝑛
         ∀𝑛 ≥ 0        (8) 
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The expression for calculating Hermite Polynomials can be simplified to a recursive formula as shown 

below, called Rodrigues Formula, where H0 = 1 and H1 = - y. 

𝐻𝑛+1(𝑦) =  −
1

√𝑛 + 1
𝑦𝐻𝑛(𝑦) − √

𝑛

𝑛 + 1
𝐻𝑛−1(𝑦)        ∀𝑛 ≥ 0       (9) 

𝑓(𝑦(𝑢)) =  ∑ 𝑓𝑛𝐻𝑛(𝑦(𝑢))

∞

𝑛=0

          (10) 

 

1.5. Practical Illustration of Modelling a Finite Function with an Asymptotic Polynomial 

Expansion 
 

An image of a Taylor polynomial approximation for two functions is shown in the figure below to illustrate 

the concept of polynomial approximation for a finite function.  

 

Extending the concept to Gaussian and Gamma functions, the images below illustrate how Hermitian and 

Laguerrian polynomials are suited to approximating Gaussian and Gamma random functions.  
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1.6. Disjunctive Kriging  
 

Disjunctive Kriging involves the use of polynomial asymptotic expansions to estimate values at unsampled 

locations. Asymptotic polynomial expansions are used to define the global anamorphosis function based 

on the sample data and respective transformed values. This can be a Gaussian transform / Hermitian 

expansion or a Gamma transform / Laguerrian expansion depending on which distribution is deemed most 

appropriate for the attribute being measured. The polynomial expansion values calculated for sample 

values/locations can be used in conjunction with simple kriging to determine the transformed (e.g., 

normal score or “gamma score”) value at an unsampled location. The global anamorphosis function is 

used to determine the “raw” back transformed value of the attribute at the unsampled location. 

Disjunctive kriging is simple co-kriging of the polynomial expansion of all orders (so informed by relative 

location and polynomial values at neighboring sampled locations). The polynomial expansions considered 

are orthogonal basis; the covariance between polynomials of different orders is zero and the covariance 

of polynomials of different orders is linked to a single variogram model; as a result, disjunctive kriging 

becomes simple kriging of the polynomial values for the transformed data values and then a linear sum 

of the resulting polynomial values across orders. This approach allows for the calculation of an expected 

value at an unsampled location based on statistical distance of nearby data points and reflecting the local 

CCDF as embedded in the polynomial values across orders at nearby sampled locations. 

Gaussian Distribution PDF

Hermite Polynomials

Gamma Distribution PDF

Laguerre Polynomials
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The polynomial expansion can be chosen to correspond to a given random function selection. While 

disjunctive kriging using Gaussian / Hermitian expansions is well documented as a substitute for simple 

MultiGaussian kriging, its application with other families of bivariate function families (such as 

MultiGamma) has not been as thoroughly described. Work has been done testing the relative 

appropriateness of a given expansion for modeling conditional PDF’s by comparing a Hermitian expansion 

for the PDF and a Laguerrian expansion for the PDF, with the actual PDF from the exhaustive data set. 

 Application in Sequential Simulation 

 

The polynomial approximation technique combined with disjunctive kriging can be used to define an 

expression for the local CCDF. Such polynomial expansions reflect the choice of bi-variate random function 

family.  Ortiz (2004) provides a good overview of fitting a finite function (any finite function is acceptable) 

with an expansion of Hermite Polynomials. The approach is to set the function equal to a weighted sum 

of the Hermite Polynomial values as shown below. The coefficient value for a given order n is solved by 

calculation of the expected value of the function and the Hermite Polynomial of a given order n. The same 

author provides a method of determining the CDF function (indicator function IY(u;yc) = prob y ≤ yc) of a 

given distribution based on Hermite Polynomial values as shown in the equations below. (note: G(y) is the 

standard normal CDF) 

𝐼𝑌(𝑢; 𝑦𝑐) =  ∑ 𝜓𝑝𝐻𝑝(𝑌(𝑢))           (11)

𝑃

𝑝=0

 

𝜓0 = 𝐺(𝑦𝑐)            (12) 

𝜓𝑝 =
1

√𝑝
𝐻𝑝−1(𝑦𝑐)𝑔(𝑦𝑐)           (13) 

These equations let us choose (or observe) our experimental moments (mean and variance of Gaussian 

PDF g(yc) above) which inform the coefficients of the Hermitian expansion. The approximation of the CDF 

is a sum of products at each order of a coefficient (based on experimental moments) and the Hermitian 

polynomial. At each unsampled location we apply disjunctive kriging to determine the polynomial values 

based on the polynomial values calculated at the sample locations. We then apply the above equations 

(derived from the observed moments) to model the local CCDF function. A random draw can then be 

taken from this CCDF to arrive at a simulated value for the unsampled location. 
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2. Simulation Methodology 

2.1. Prior Work 
 

Emery (2006) also completed work on the use of various bivariate random function families to 

estimate ore body attributes at unsampled locations with Disjunctive Kriging. Work has also been 

completed (Emery 2002) using isofactorial representation of the bivariate random function family and 

disjunctive kriging to simulate ore body parameters (“sequential isofactorial simulation”). In this instance, 

while the theory is well described, the practical implementation including the approach sampling the local 

conditional cumulative distribution function is not.  

2.2. Simulation Approach 
 

A sequential simulation algorithm was developed for sequential simulation using disjunctive kriging 

of Hermitian polynomials. The Hermitian polynomials up to a selected order “N” are calculated at all 

sampled locations based on normal score values. A variogram model is fitted to normal score values. 

Simple kriging is completed to solve for the Hermitian values of each order at the unsampled location. The 

covariance between polynomials of an order N is based on the normal score value variogram with the 

resulting correlogram value raised to the power “N”. 

Once the Hermitian values at the unsampled location are determined, the CCDF function at that 

location, (as a weighted sum of the Hermitian values) is used for the random draw. The weightings for 

each order Hermitian polynomial in the CCDF are derived based on equations 11, 12 and 13 shown in 

section 1.6 above. The result is an equation for the CCDF value at an unsampled location as a function of 

the actual (unknown) variable value at that location.  

Sequential simulation draws a random number between zero and one and assumes this to be the 

CCDF value. Because the CCDF (by definition) is a monotonic function, a guess and check bounding 

algorithm was designed to iteratively determine the corresponding actual variable value that the CCDF 

random draw corresponds to (within a specified tolerance). The algorithm evaluates the CCDF value for 

the endpoints and midpoint of a range of the underlying variable; this range is then halved based on the 

relative location of the randomly drawn simulated CCDF value. The process is repeated until the drawn 

CCDF value is deemed close enough to one of the calculated CCDF values. 

3. Results 
 

It is possible to compare the results of the Hermitian disjunctive kriging simulation algorithm against 

frequently utilized traditional sequential Gaussian simulation programs. For such a comparison a 200x200 

empty array was initialized and a seed value of -1.5 is placed in the center of the array. The seeded array 

is run through both the Hermitian disjunctive kriging algorithm, and GSLIB’s Sequential Gaussian 

Simulation (“SGS”) program. The results of both are shown below and indicate that simulation using 

Hermitian polynomials appears to accurately simulate a multi-Gaussian distribution.  
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4. Extensions of Methodology 

4.1. MultiGamma Random Function  
 

Wilson and Wragg (1973) provide three methods “…for the reconstruction of a continuous probability 

density function f(x) from given values of the moments of the distribution.” One of these methods involves 

use of an asymptotic expansion, specifically an expansion of Laguerre Polynomials. This approach is suited 

to distributions that are expected or observed to be “Gamma like”. This contrasts with the Hermite 

Polynomial expansions described by Edgeworth that are appropriate for distributions observed or 

expected to be “Gaussian like”.  

When dealing with the Hermitian expansion, the Gaussian distribution function is characterized by its 

mean and variance, which may be determined in a straightforward manner from the values of the sample 

data. In the Laguerrian case, the Gamma distribution function is characterized by a shape parameter α 

and a rate parameter β that are not as easily determined from the sample data. The shape and rate 

parameter are key inputs to the PDF and CDF functions for Gamma distributions. In order to utilize the 

Laguerrian expansion, we require a value for the shape and rate parameters. Using certain integral 

conditions, these parameters can be determined according to the below equations based on the first 

(mean) and second (variance) moments of the transformed sample data (Mustapha and Dimitrakopoulos 

2010).  

𝛼 =  
2𝑚1

2 − 𝑚2

𝑚2 − 𝑚1
2       (14) 

𝛽 =  
𝑚1

𝑚2 − 𝑚1
2          (15) 
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With these parameters calculated, the equations of the Laguerrian expansion and polynomials are set out 

below. 

𝑃(𝑧) ≈ 𝑃∞
𝛼(𝑧) =  ∑ 𝑟𝑛𝐿𝑛

(𝛼)
(𝑧)𝜙𝐺𝐴𝑀(𝑧)      (16)

∞

𝑛=0

 

𝜙𝐺𝐴𝑀(𝑧) =  
𝛽

𝛤(𝛼 + 1)
𝑧𝛼𝑒−𝑧      (17) 

𝐿𝑛
(𝛼)

(𝑧) =  ∑
(−1)𝑖

𝑖!

𝑛

𝑖=0

(
𝑛 + 𝛼

𝑛 − 𝑖
) 𝑧𝑖      (18) 

𝑟𝑛 =
𝑛! 𝛤(𝛼 + 1)

𝛤(𝑛 + 𝛼 + 1)
∑

(−1)𝑖

𝑖!

𝑛

𝑖=0

(
𝑛 + 𝛼

𝑛 − 𝑖
) 𝛽𝑖𝑚𝑖       (19) 

It can be seen above that the PDF value as determined by the Laguerrian expansion is fully defined by the 

observed moments of order 1, 2, …, i of the available (and relevant) sample data. In the Hermitian case, 

as previously described, the PDF is determined based on the observed cumulants of the empirical 

distribution where such cumulants can be directly related to observed moments. These equations let us 

choose (or observe) our experimental moments which inform the coefficients and thus define the global 

PDF distribution function. The approximation of the local PDF (or CDF) is a sum of products across orders 

of a coefficient (based on experimental moments) and a Laguerre or Hermite polynomial. The Laguerrian 

case equations are more complicated than the Hermitian case; requiring both higher orders of cumulants 

and also incorporation of theoretical moments. 

Mustapha and Dimitrakopoulos (2010) noted that a Laguerrian expansion around a Gamma distribution 

“…is suited for simulating high complex natural phenomena that deviate from Gaussianity”. They 

examined certain data sets comparing a Hermitian expansion for the PDF and a Laguerrian expansion for 

the PDF, with the actual PDF from the exhaustive data set. When applying the Hermitian expansion, they 

utilized certain practical corrections to the Hermitian expansion such as the Saddle Point Approximation. 

The results showed better performance of a Laguerrian expansion relative to a Hermitian expansion of 

the same order (which had negative probabilities) or a Hermitian expansion with Saddlepoint 

Approximation (which was undefined in certain areas).  

The choice of theoretical distribution used to develop the PDF function to approximate the empirical CCDF 

is very important under truncation. While in the case of an infinite expansion, any choice of finite 

developing distribution function will allow for convergence of the approximation, selection of a 

theoretical distribution that more closely fits the empirical data should reduce the order of the expansion 

required to achieve a certain quality of fit. This in turn allows for more efficient computational 

implementation. Application of our mapping tool for determination of the “best” suited random function 

family (and associated orthogonal polynomial expansion) has potential to improve computational 

efficiency and accuracy of ore body parametric simulation. 
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4.2. Destructuration of Grade 
 

Emery (2008) identified that the destructuration of grade can be modelled by “randomizing” the 

correlation between the orders of the polynomials (i.e., the correlations itself becomes a random 

function). This correlation random function can range between a regular BiGaussian (or BiGgamma) model 

with no destructuration or a full mosaic model representing complete destructuration. This approach 

takes the pure BiGaussian (and BiGamma) model and extends them to more generalized “Hermitian” and 

“Laguerrian” models respectively. Without this adjustment, the BiGaussian and BiGamma models would 

be described as diffusive. The diffusive property mathematically requires that the correlogram of the 

polynomials of order “p” are equal to the correlogram of the variable raised to the power p. Practically, 

the diffusive property means that non-uniform connectivity of values (i.e. connectivity of extreme values) 

cannot be reflected in the model. This is due to the higher order correlograms trending to zero as the 

power p increases (pure nugget). 

In order to create non-diffusive more generalized models, the correlation coefficient is randomized. The 

correlation coefficient of higher orders is similarly the randomized correlation coefficient raised to that 

specific order p. A Beta distribution for the randomized variable is often selected with parameters βρ(h) 

and β(1-ρ(h)) where the scalar parameter β takes a value between zero and one. Under this condition, it 

can be shown that the correlation coefficient for order “p” is described by the equation below rather than 

the diffusive case where it is ρ(h)p (Chiles and Delfiner 1999) 

∀𝑝 ∈ 𝑁∗   𝑇𝑝(ℎ) =  
𝛤(𝛽)𝛤(𝛽𝜌(ℎ) + 𝑝)

𝛤(𝛽𝜌(ℎ))𝛤(𝛽 + 𝑝)
         (20) 

The above equation allows us to calculate the correlation coefficient for our Hermitian and Laguerrian 

polynomial expansions to create non-diffusive models. The question of how to choose the best β for a 

given data set is not readily apparent. Emery (2005) incorporates the randomizing distribution as a 

function of β into the equation for variograms of order ω, such that using the equations previously 

outlining a selection criterion can be calculated; the clear drawback of this approach is the inability to 

separate the choice of bi-variate random function family and choice of destructuration (β). An alternate 

approach described by Emery in 2002 involves the use of the relation between the observed variogram 

and madogram as shown in the equation below for the Laguerrian case. A similar expression can be 

derived for the Hermitian case. 

𝛾1(ℎ) =  
𝛤(𝛼 +

1
2)𝛤(𝛽)

√𝜋𝛤(𝛼)𝛤(𝛽 +
1
2)

𝛤(
𝛽𝛾(ℎ)

𝛼 +
1
2)

𝛤(
𝛽𝛾(ℎ)

𝛼 )
        (21) 

These equations will be used to create a tool that optimizes the choice of β to the available data. In 

practical terms the equation above can be thought of as a method to assess the amount of destructuration 

present in a data set. 
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5. Conclusions 
 

A sequential simulation algorithm has been developed with the ability to model non-Gaussian random 

function based simulations. Polynomial expansions are used to encode information content in the 

available sample data. Disjunctive kriging is used to model the CCDF function at unsampled locations. 

Unsampled locations are visited in a random order and at each location a random draw is made from the 

local CCDF function. The simulation algorithm is applied with a Gaussian random function model and 

associated Hermitian polynomial expansion. The results under specific conditioning data are in line with 

the results from a traditional sequential Gaussian simulation verifying the accuracy of the approach. 

Incorporation of a Gamma random function model (and associated Laguerre Expansion) is outlined. 

Consideration on using a coefficient of destructuration to allow simulation of non-diffusive random 

functions is also described. 
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A Quick Guide to Developing a Mine Plan1 
Mehmet Altinpinar (19ma57@queensu.ca) 

Julian M. Ortiz (julian.ortiz@queensu.ca) 

Abstract 
Mining value chain is a series of interdisciplinary processes including prospecting, 
exploration, development, exploitation, mineral processing and reclamation. Mine 
planning plays an important role in the mining value chain for both open pit and 
underground mines starting from the end of the exploration stage and it continues 
toward the development and exploitation stages. In this paper, a quick guide for a life 
of mine planning process of open pit mining is provided and a case study is presented 
using a resource block model that is developed by implementing a synthetic drillhole 
campaign on a synthetic mineral deposit. 

 

 

1. Introduction 
In general terms, mine planning for an open pit operation starts with a block model and it involves 

determination of i) Whether a given block in the model should be mined or not; ii) If it is to be mined, 

when it should be mined; and iii) Once it is mined then how it should be processed (Dagdelen, 2001). Such 

block model used to be simply a geological model created by including the grades of the minerals to be 

exploited and processed. The current practices, on the other hand, involve more advanced models that 

incorporate expert knowledge from different areas like geology, mining, mineral processing, extractive 

metallurgy, mathematical modeling and computing to improve the use of resources such as ore, water, 

energy, equipment and labor (Ortiz, 2019). 

After a resource block model is developed through exploration studies, three progressive stages of 

study are performed within the scope of planning (Hustrulid et al., 2013), namely: 

1. Conceptual study (Scoping): This is the stage where a project idea is extensively transformed into 
an investment proposition by using historical data as a reference when making estimations 
regarding the capital and operation costs and highlighting the major aspects of a possible mining 
project. 

2. Pre-feasibility study: This is an intermediate level study between a relatively inexpensive 
conceptual study and a relatively expensive feasibility study. It has a higher level of confidence 
compared to scoping, yet, still not suitable for an investment decision. Objective of the project, 
ore tonnage and grade, production schedule, capital cost, operating cost and revenue estimates, 
taxes and financing and cash flow tables are the important sections of a report to be generated 
at the end of a pre-feasibility study. 

 
1 Cite as: Altinpinar M, Ortiz JM (2021) A Quick Guide to Developing a Mine Plan, Predictive Geometallurgy and 
Geostatistics Lab, Queen’s University, Annual Report 2021, paper 2021-06, 61-78. 

mailto:19ma57@queensu.ca
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3. Feasibility study: This is the stage in which a definitive technical, environmental and commercial 
base for an investment decision is provided. In addition to the important sections to be included 
in a pre-feasibility report, a feasibility report is prepared by including general information 
regarding the project area, such as topography, climate, population, services, etc., as well as the 
information about geology, mining, metallurgy, and environmental effects.  

Besides resource estimation studies, these three stages of study should be carried out within the 

framework of a codified set of rules and guidelines such as NI 43-101 (National Instrument for the 

Standards of Disclosure for Mineral Projects within Canada), JORC (Joint Ore Reserves Committee) Code, 

SAMREC (South African Code for the Reporting of Mineral Resources and Mineral Reserves), etc., when 

reporting and disclosing information related to mineral properties. These guidelines do not only constitute 

instruments for reporting and disclosing purposes but also provide the mining companies with a vision to 

perform their technical studies in the most efficient and proper way. Some definitions and interpretations 

used in the following sections of this paper are taken from NI 43-101 (2016) and CIM (2014). 

2. Methodology 
In this study, a generalized methodology for mine planning is given for an open pit mine for a single 

commodity (e.g. copper). Different methodologies can be adopted based on project, type and number of 

commodities, mining method (i.e. open pit or underground), etc. Figure 1 shows the methodology 

followed in this study. 

 

Figure 1 Methodology 
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2.1. Resource Block Model 
A resource block model is obtained by performing resource estimation studies, and it should be 

validated before continuing with mine planning studies. After it is created and validated accordingly, the 

block model is now ready for the planning stage and it should, at least, include the parameters shown in 

Table 1 for the purpose of mine planning studies. 

Table 1 Block Model Parameters for Mine Planning Studies 

No Variable Remarks 

1 xCentre x coordinate of the centre of the block 

2 yCentre y coordinate of the centre of the block 

3 zCentre z coordinate of the centre of the block 

4 xDimension Dimension of the block in the x direction 

5 yDimension Dimension of the block in the y direction 

6 zDimension Dimension of the block in the z direction 

7 Volume Volume of the block 

8 Domain Domain of the block 

9 Density Block density for reporting tonnage.  

10 RockCode To determine if the block is ore, waste or airblock 

11 NP Number of estimation passes to categorize the block for resource classification 

12 Grade Grade of the element to be reported  

 

The block model is typically comprised of several domains, which are basically identified according to 

the geological setting of the mineral deposit and based on the similarities and differences between the 

geological features, such as lithology, alteration and mineralization. Different types of rock materials 

present in a mineral deposit have different types of production (exploitation and excavation) and 

processing or treatment behaviours. Therefore, the domains in the resource model are categorized, in 

general, as: 

1. Mineralized (ore) domains: The materials coming from these domains are sent to the mineral 
processing plant to extract the elements of interest. 

2. Transition domains: The materials from these domains are either processed in processing plant 
or they are treated as waste materials. Further metallurgical tests are required to figure out how 
to treat these domains. 

3. Waste domains: The materials coming from these domains are dumped in the waste dump areas 
within the project site.  

2.2. Mineral Resource Classification 
The resource block model is categorized based on the geological confidence as well as on the 

confidence level of the estimation process. There are three categories defined in NI 43-101 (2016) and 

CIM (2014), namely: 

1. Measured Mineral Resource: A Measured Mineral Resource is that part of a Mineral Resource for 
which quantity, grade or quality, densities, shape, and physical characteristics are estimated with 
confidence sufficient to allow the application of Modifying Factors to support detailed mine 
planning and final evaluation of the economic viability of the deposit. 
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Geological evidence is derived from detailed and reliable exploration, sampling and testing and is 
sufficient to confirm geological and grade or quality continuity between points of observation. 

A Measured Mineral Resource has a higher level of confidence than that applying to either an 
Indicated Mineral Resource or an Inferred Mineral Resource. It may be converted to a Proven 
Mineral Reserve or to a Probable Mineral Reserve. 

Mineralization or other natural material of economic interest may be classified as a Measured 
Mineral Resource by the Qualified Person when the nature, quality, quantity and distribution of 
data are such that the tonnage and grade or quality of the mineralization can be estimated to 
within close limits and that variation from the estimate would not significantly affect potential 
economic viability of the deposit. This category requires a high level of confidence in, and 
understanding of, the geology and controls of the mineral deposit. 

2. Indicated Mineral Resource: An Indicated Mineral Resource is that part of a Mineral Resource for 
which quantity, grade or quality, densities, shape and physical characteristics are estimated with 
sufficient confidence to allow the application of Modifying Factors in sufficient detail to support 
mine planning and evaluation of the economic viability of the deposit. 

Geological evidence is derived from adequately detailed and reliable exploration, sampling and 
testing and is sufficient to assume geological and grade or quality continuity between points of 
observation. 

An Indicated Mineral Resource has a lower level of confidence than that applying to a Measured 
Mineral Resource and may only be converted to a Probable Mineral Reserve. 

Mineralization may be classified as an Indicated Mineral Resource by the Qualified Person when 
the nature, quality, quantity and distribution of data are such as to allow confident interpretation 
of the geological framework and to reasonably assume the continuity of mineralization. The 
Qualified Person must recognize the importance of the Indicated Mineral Resource category to 
the advancement of the feasibility of the project. An Indicated Mineral Resource estimate is of 
sufficient quality to support a Pre-Feasibility Study which can serve as the basis for major 
development decisions. 

3. Inferred Mineral Resource: An Inferred Mineral Resource is that part of a Mineral Resource for 
which quantity and grade or quality are estimated on the basis of limited geological evidence and 
sampling. Geological evidence is sufficient to imply but not verify geological and grade or quality 
continuity. 

An Inferred Mineral Resource has a lower level of confidence than that applying to an Indicated 
Mineral Resource and must not be converted to a Mineral Reserve. It is reasonably expected that 
the majority of Inferred Mineral Resources could be upgraded to Indicated Mineral Resources 
with continued exploration.  

An Inferred Mineral Resource is based on limited information and sampling gathered through 
appropriate sampling techniques from locations such as outcrops, trenches, pits, workings and 
drill holes. Inferred Mineral Resources must not be included in the economic analysis, production 
schedules, or estimated mine life in publicly disclosed pre-feasibility or feasibility studies, or in 
the life of mine plans and cash flow models of developed mines. 
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There are several parameters set during the estimation process and these parameters determine the 

level of confidence of each estimation pass. Such parameters include search ellipsoid radii, which are 

basically determined by performing variography analysis on element grade, the angles (i.e. bearing, 

plunge and dip) determining the positioning of ore body within mineral deposit, number of minimum and 

maximum samples to be used during each estimation pass, etc. Each estimation pass has a lower level of 

confidence than the previous pass. The estimation process is typically completed in 3 or 4 passes. 

Categorizing the estimation results based on the number of estimation pass is one of the ways for resource 

classification found in technical reports. However, there are better ways to categorize mineral resources 

according to the geological and geostatistical confidence, for example, the number of samples used to 

estimate a block grade, the distance between those samples and the estimated block, etc. 

2.3. Pit Optimization 
After resource classification, the resource block model is transferred to an optimization module or 

software to perform the pit optimization process. In this study, Geovia WhittleTM (Whittle) was used as 

the optimization software and the parameters defined in this study are the ones used in Whittle. The 

optimization is an implementation of the Lersch-Grossmann algorithm. 

There are some adjustments made before transferring the resource model to Whittle in order to 

obtain proper results from the pit optimization process. These adjustments are explained below:  

1. Setting the grades of the blocks in the inferred mineral resource category to zero (0) in order to 
ensure that they are excluded during the pit optimization and from mineral reserve statement. 
Only the measured and indicated mineral resource categories are taken into consideration when 
developing a production plan. 

This step includes all of the inferred blocks in the waste, transition and ore domains: 
a. Replacing the grades of all blocks in waste domains and transition domains (if they will be 

treated as waste material based on the results of metallurgical tests) with zero. 
b. Replacing the grades of all non-measured and non-indicated category blocks in ore 

domains with zero. 

2. Replacing all RockCode values with “6666” for the blocks with a grade value of zero (0) in order 
to mark them as waste blocks in Whittle. 

3. Replacing all RockCode values with “5555” for the air blocks* in the block model in order to mark 
them as air blocks in Whittle. 

 
* air blocks are the ones above topography 

Having completed these adjustments, the block model is now ready to be imported to Whittle for pit 

optimization. First, the optimization process is carried out by setting the parameters shown in Table 5 in 

order to generate nested pit shells for several revenue factors ranging from a low value (for example 0.1) 

to a high value (for example 2.0) with a reasonable step, such as 0.02. Here 0.1 and 2.0 are the coefficients 

to multiply the long term reference price of the commodity in question. So, it is expected to obtain a pit 

shell even with the lowest revenue factor, 0.1, and such pit shell would be the starter pit, i.e. where the 

excavator will be located in the field to start production. The pit shell to be obtained using the revenue 

factor 1.0 is the one that would be attained with the long term reference price of the commodity. All other 
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pit shells to be created using different revenue factors are generated to account for possible fluctuations 

in the commodity price in the future and understand the best sequence of extraction, so that the risks 

and/or benefits associated with the project could be addressed and interpreted. 

2.4. Operational Scenario 
After completing the optimization process as explained in Section 2.3, a new operational scenario is 

added in Whittle by using the parameters shown in Table 7 and the pit by pit analysis and scheduling steps 

are performed. 

2.4.1. Pit by Pit Analysis 

A pit by pit graph is obtained as a result of the pit by pit analysis in Whittle. It is a bar chart where 

each bar represents a pit shell corresponding to a revenue factor. Starter pit, pushbacks and ultimate pit 

shell can be determined by looking at this graph. Ideally, each “jump” observed in this graph is a candidate 

of a pushback and should be used in different combinations with other pushback candidates when trying 

to obtain the optimum scheduling scenario using the “best approach” option in Whittle. In some cases, 

however, it may not be possible to schedule by using the best approach option due to the exposure of 

significant amount of ore and waste material at a certain point during the mine life. In such cases, the said 

significant amount of material should be evenly split into a number of pushbacks, which have 

approximately equal production lives that are reasonable according to the mining and processing capacity 

of the project. 

Ultimate pit limit is another factor when conducting pit optimization process. According to Mwangi et 

al. (2020) the main idea behind ultimate pit limit (UPL) optimization is the maximization of the total 

difference between the total cost of mining the valuable minerals and the overlying waste and the value 

that is obtained from the valuable mineral that will be mined with respect to satisfying all the pit slope 

stability and operational constraints. Therefore, the ultimate pit limit should be determined by comparing 

the risk associated with extending the life of mine and thereby increasing the amount of material (both 

valuable minerals and the overlying waste) to be removed (excavated) with the value to be obtained from 

the operation. It should be emphasized that the determination of the ultimate pit limit does not account 

for the time value of money, that is, the undiscounted value of the pit is considered in the optimization. 

Therefore, the added value of an expansion in the future will not reflect its true present value, considering 

the discount rate. 

2.4.2. Scheduling 

After being determined as explained in Section 2.4.1, starter pit, pushbacks and UPL are used as 

parameters to run the scheduling module of Whittle. The resultant graph and the corresponding 

spreadsheet show the amount of ore and waste materials to be excavated in each period during the life 

of mine. Also, open pit cash flow, discounted open pit cash flow and discounted cumulative open pit cash 

flow are reported in the scheduling output spreadsheet. 

2.5. Mineral Reserve Statement and NPV 
The starter pit and the pushbacks as well as the ultimate pit shell are transferred back to the mining 

software (Maptek Vulcan was used in this study) for visualization and reserve calculation studies. The 

measured and indicated blocks inside the UPL are now labelled as proven and probable reserves, 
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respectively. This is the simplified case of converting resources to reserves. In practice, however, all 

modifying factors including, but not limited to, mining, processing, metallurgical, infrastructure, 

economic, marketing, legal, environmental, social and governmental factors, which are set forth in the 

CIM Definition Standards for Mineral Resources & Mineral Reserves, should be taken into consideration 

(Altinpinar, 2021; CIM, 2014).  

The net present value of a project can be obtained from the scheduling output spreadsheet generated 

at the end of scheduling module of Whittle. One could also calculate a project’s NPV manually (in MS Excel 

for example) by using the same parameters shown in Table 7. 

3. Case Study 

3.1. Resource Block Model 
The resource block model used in this study was obtained by performing a synthetic drillhole 

campaign on a synthetic mineral deposit, which was developed with a high resolution for a porphyry 

copper deposit (Altinpinar, 2021). The block model parameters are summarized in Table 2 and the domain 

classification is given in Table 3.  

Table 2 Resource Block Model Parameters 

No Parameter Value 

1 # of blocks in the X (easting) direction 200 

2 # of blocks in the Y (northing) direction 200 

3 # of blocks in the Z (elevation) direction 100 

4 Total # of blocks 4,000,000 

5 Block dimensions in the X (easting) direction 10 

6 Block dimensions in the Y (northing)direction 10 

7 Block dimensions in the Z (elevation) direction 10 

8 # of domains defined 16 

9 # of ore domains 9 

10 # of transition domains 2 

11 # of waste domains 5 

12 Density (fixed density value was used) 2.7 t/m3 
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Table 3 Domains in the Resource Block Model 

Domain Description Category 

111 Leached (LIX) - All Low Grade Waste 

222 Partially Leached (PLIX) - All Low Grade Waste 

333 Oxide (OX) - All Low Grade Waste 

444 Mixed (MIX) in Quartz (Qz) Transition 

499 Mixed (MIX) – Other Transition 

520 Primary in Sediments Ore 

530 Primary in Porphyries Ore 

532 Primary in Low Grade Porphyry Ore 

540 Primary in Dacite and Andesite Ore 

560 Primary in Hornfel, Skarn, Anhydrite Ore 

566 Primary in Hornfel Ore 

577 Primary in Skarn Ore 

580 Primary in Breccias Ore 

588 Primary Not Altered Waste 

599 Primary in Anhydrite Ore 

888 Host Rock Waste 

 

3.2. Mineral Resource Classification 
The resource block model was categorized based on the estimation passes. In other words, the blocks 

estimated during the 1st pass were labelled as “Measured” mineral resource, the blocks estimated during 

the 2nd pass were labelled as “Indicated” mineral resource and the blocks estimated during the 3rd and 4th 

passes were labelled as “Inferred” mineral resource. The resource categories are summarized in Table 4. 

Table 4 Resource classification 

Parameter Unit 
Measured Indicated 

Inferred from the 
Mineralized Domains 

Inferred from 
the Waste & 

Transition 
Domains 

Inferred 
Overall 

NP_1 NP_2 NP_3 NP_4 

# blocks count 306,487 148,450 123,298 264,537 2,683,821 3,071,656 

Total Volume m3 306,487,000 148,450,000 123,298,000 264,537,000 2,683,821,000 3,071,656,000 

Total Tonnage t 827,514,900 400,815,000 332,904,600 714,249,900 7,246,316,700 8,293,471,200 

Average Cu Grade % 0.495 0.491 0.479 0.073 0.124 

Total Cu t 4,096,199 1,968,002 5,015,870 5,289,811 10,283,904 

3.3. Pit Optimization 
After resource classification was completed and the adjustments listed in Section 2.3 were made, the 

block model was imported to Whittle and pit optimization was performed by using the parameters shown 

in Table 5. Before the pit optimization process, the block model was reblocked in Whittle from 4 million 

blocks to 500 thousand block for ease of processing. 

For the purpose of this case study, several combinations were tried for the range of revenue factor 

values and the corresponding pit by pit analyses were checked accordingly. Finally, the range from 0.1 to 

0.52 with a step size of 0.005 was adopted as it generated the best alternative for the nested pit shells 

and also it was the best range option addressing the significant amount of ore and waste material exposed 

in year 4.2. The results of pit optimization process are shown in Table 6. 
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Table 5 Parameters for the pit optimization 

Parameter Unit Value Remarks 

Slope deg 45 Overall pit slope 

Mining cost $/t 2.75 Based on the industrial references 

Mining recovery fraction % 90 
10% of the ore material will not be recovered 
during the production 

Dilution % 10 
10% of the waste material will be sent to the 
processing plant 

Processing cost $/t 8 Based on the industrial references 

Process recovery % 85 Copper froth flotation recovery 

Selling price $/t 9750 LME – simply the current price was used 

Selling cost $/t 100 Including selling cost, insurance, freight 

Revenue factors - 0.1 to 0.52 Using 85 fixed factors with a step size of 0.005 
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Table 6 Generated pit shells 

Pit 
Minimum 

Revenue Factor 
Maximum 

Revenue Factor 
Rock 

Tones 
Ore 

Tones 
Strip 
Ratio 

Max 
Bench 

Min 
Bench 

Cu 
Units 

Cu 
Grade 

1 0.34 0.345 10800 5346 1.02 44 43 2673 0.4999 

2 0.35 0.355 27000 10692 1.53 44 43 5811 0.5435 

3 0.36 0.37 129600 45441 1.85 45 42 25368 0.5583 

4 0.375 0.375 276936300 91662517 2.02 48 25 49985506 0.5453 

5 0.38 0.38 277068600 91943182 2.01 48 25 50071160 0.5446 

6 0.385 0.385 291816000 99056035 1.95 48 24 53248638 0.5376 

7 0.39 0.39 292607100 99459658 1.94 48 24 53421829 0.5371 

8 0.395 0.395 310702500 107232742 1.9 48 24 56958453 0.5312 

9 0.4 0.4 1280952900 463439398 1.76 48 10 229248172 0.4947 

10 0.405 0.405 1294520400 468408506 1.76 48 10 231615624 0.4945 

11 0.41 0.41 1321128900 478830533 1.76 48 10 236372364 0.4936 

12 0.415 0.415 1345221000 488071094 1.76 48 10 240573258 0.4929 

13 0.42 0.42 1468627200 520919591 1.82 49 9 258444841 0.4961 

14 0.425 0.425 1496461500 530507642 1.82 49 9 262926543 0.4956 

15 0.43 0.43 1534204800 542463971 1.83 49 8 268707117 0.4953 

16 0.435 0.435 1547426700 548168153 1.82 49 8 271051757 0.4945 

17 0.44 0.44 1564852500 555823625 1.82 49 8 274140416 0.4932 

18 0.445 0.445 1578066300 561498404 1.81 49 8 276422454 0.4923 

19 0.45 0.45 1630413900 580492743 1.81 49 8 284581087 0.4902 

20 0.455 0.455 1645091100 586234347 1.81 49 8 286934404 0.4895 

21 0.46 0.46 1654865100 590799831 1.8 49 8 288640431 0.4886 

22 0.465 0.465 1665365400 595472235 1.8 49 8 290405259 0.4877 

23 0.47 0.47 1701502200 607027614 1.8 49 8 295468453 0.4867 

24 0.475 0.475 1718069400 612892176 1.8 49 8 297881050 0.486 

25 0.48 0.48 1725075900 615575868 1.8 49 8 298935655 0.4856 

26 0.485 0.485 1739553300 621207879 1.8 49 8 301104903 0.4847 

27 0.49 0.49 1774890900 630993732 1.81 49 7 305540167 0.4842 

28 0.495 0.495 1819268100 643201323 1.83 49 7 311039542 0.4836 

29 0.5 0.5 1832814000 647753442 1.83 49 7 312859124 0.483 

30 0.505 0.505 1883150100 663836883 1.84 49 7 319400841 0.4811 

31 0.51 0.51 1902482100 670372368 1.84 49 7 321965508 0.4803 

32 0.515 0.515 1917691200 675357514 1.84 49 7 323931481 0.4796 

33 0.52 0.52 1931585400 679949728 1.84 49 7 325714262 0.479 

 

3.4. Operational Scenario 
After completing the pit optimization step, a new operational scenario was added using the 

parameters shown in Table 7 and pit by pit analysis and scheduling steps were run. 
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Table 7 Parameters for operational scenario 

Initial capital cost M$ 500 Initial investment for the project 

Terminal value M$ 50 Assets to be sold at the end of the project 

Discount rate per period % 10 The rate used in Discounted Cash Flow Analysis 

Mining limit Mt 

Year 1 30 Annual open pit production capacity was assumed 
to be low during the first three years of the 
operation with an increasing rate and eventually 
reaching the full capacity at the fourth year.  

Year 2 60 

Year 3 90 

Year 4-18 120 

Processing limit Mt 80 
Annual processing plant capacity (based on the 
stripping ratio) 

Mining cost adjustment factor - None Adjustment factor was not applied 

Processing cost adjustment 
factor 

- None Adjustment factor was not applied 

 

3.4.1. Pit by Pit Analysis 

The results of the pit by pit analysis are shown in Table 8 and in Figure 2 as a graph. 

Table 8 Results of the pit by pit analysis  

Final 
pit 

Open pit 
cashflow 

best 
disc ($) 

Open pit 
cashflow 
specified 
disc ($) 

Open pit 
cashflow 

worst 
disc ($) 

Ore 
Input 
best 

(tonne) 

Waste 
best  

(tonne) 

Mine 
life 

years 
best 

Mine 
life 

years 
specified 

Mine 
life 

years 
worst 

IRR 
best 

% 

IRR 
specified 

% 

IRR 
worst 

% 

1 -449,854,976 -449,854,976 -449,854,976 5,346 5,454 0.0 0.0 0.0 0.0 0.0 0.0 

2 -449,687,427 -449,687,427 -449,687,427 10,692 16,308 0.0 0.0 0.0 0.0 0.0 0.0 

3 -448,660,277 -448,660,277 -448,660,277 45,441 84,159 0.0 0.0 0.0 0.0 0.0 0.0 

4 1,321,835,117 1,321,723,265 1,321,723,265 93,343,833 183,592,467 3.9 3.9 3.9 48.9 48.8 48.8 

5 1,322,944,917 1,322,958,987 1,322,958,987 93,440,061 183,628,539 3.9 3.9 3.9 48.9 48.9 48.9 

6 1,419,722,843 1,415,707,788 1,415,707,788 100,574,298 191,241,702 4.0 4.0 4.0 50.8 50.0 50.0 

7 1,424,545,976 1,420,245,209 1,420,245,209 100,846,944 191,760,156 4.0 4.0 4.0 50.8 50.0 50.0 

8 1,544,174,588 1,532,655,196 1,532,655,196 108,721,601 201,980,899 4.2 4.2 4.2 52.4 50.1 50.1 

9 4,372,395,169 3,466,108,146 3,466,108,146 495,357,685 785,595,215 12.9 13.0 13.0 53.6 28.8 28.8 

10 4,399,537,802 3,462,636,363 3,462,636,363 499,303,033 795,217,367 12.9 13.1 13.1 53.6 28.6 28.6 

11 4,459,663,124 3,472,658,482 3,472,658,482 508,693,282 812,435,618 13.1 13.3 13.3 53.6 28.2 28.2 

12 4,513,496,779 3,481,083,449 3,481,083,449 517,033,042 828,187,958 13.2 13.5 13.5 53.7 27.9 27.9 

13 4,726,216,184 3,407,245,975 3,407,245,975 549,306,843 919,320,357 14.3 14.4 14.4 53.7 26.1 26.1 

14 4,773,594,194 3,387,226,300 3,387,226,300 557,986,074 938,475,426 14.5 14.7 14.7 53.8 25.7 25.7 

15 4,832,006,744 3,364,501,391 3,364,501,391 569,298,210 964,906,590 14.8 15.0 15.0 53.8 25.3 25.3 

16 4,853,321,420 3,362,941,916 3,362,941,916 574,109,610 973,317,090 14.9 15.1 15.1 53.8 25.2 25.2 

17 4,883,526,547 3,360,953,090 3,360,953,090 581,021,988 983,830,512 15.1 15.2 15.2 53.8 25.0 25.0 

18 4,905,460,918 3,360,465,255 3,360,465,255 585,710,430 992,355,870 15.2 15.3 15.3 53.8 24.9 24.9 

19 4,985,845,794 3,328,612,470 3,328,612,470 604,325,202 1,026,088,698 15.6 15.8 15.8 53.8 24.3 24.3 

20 5,005,432,691 3,318,632,797 3,318,632,797 608,954,838 1,036,136,262 15.7 15.9 15.9 53.8 24.2 24.2 

21 5,018,816,787 3,306,180,874 3,306,180,874 612,475,179 1,042,389,921 15.8 16.0 16.0 53.8 24.1 24.1 
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Table 8 (continued) 

22 5,032,512,917 3,297,718,479 3,297,718,479 616,201,341 1,049,164,059 15.9 16.1 16.1 53.8 24.0 24.0 

23 5,076,523,492 3,265,071,050 3,265,071,050 626,917,398 1,074,584,802 16.2 16.4 16.4 53.8 23.6 23.6 

24 5,096,475,507 3,249,369,884 3,249,369,884 632,049,558 1,086,019,842 16.4 16.5 16.5 53.8 23.4 23.4 

25 5,104,039,026 3,239,385,058 3,239,385,058 633,901,947 1,091,173,953 16.4 16.5 16.5 53.8 23.3 23.3 

26 5,121,227,528 3,225,145,789 3,225,145,789 638,972,628 1,100,580,672 16.5 16.7 16.7 53.9 23.2 23.2 

27 5,154,872,808 3,182,157,563 3,182,157,563 648,023,406 1,126,867,494 16.8 16.9 16.9 53.9 22.8 22.8 

28 5,196,279,800 3,122,062,345 3,122,062,345 659,707,089 1,159,561,011 17.2 17.3 17.3 53.9 22.3 22.3 

29 5,209,276,496 3,104,521,979 3,104,521,979 663,708,570 1,169,105,430 17.3 17.4 17.4 53.9 22.2 22.2 

30 5,255,794,518 3,045,152,821 3,045,152,821 679,628,958 1,203,521,142 17.7 17.8 17.8 53.9 21.8 21.8 

31 5,272,292,903 3,015,841,770 3,015,841,770 685,651,227 1,216,830,873 17.9 18.0 18.0 53.9 21.6 21.6 

32 5,284,296,033 2,996,149,103 2,996,149,103 690,042,966 1,227,648,234 18.0 18.1 18.1 53.9 21.4 21.4 

33 5,296,073,784 2,977,502,943 2,977,502,943 694,119,291 1,237,466,109 18.1 18.2 18.2 53.9 21.3 21.3 

 

 

Figure 2 Pit by pit graph 

As seen in Figure 2, a big jump in reserve at the 9th pit shell, which corresponds approximately to the 

fourth year of the operation, is obtained even with a slight increase in revenue factor and a significant 

amount of material (ore and waste) is exposed. This means that the scheduling after that period is not 

sensitive to the direction of mining and basically, similar materials are being accessed for a long period of 

time. Therefore, the life of mine was manually divided into periods that are close to each other as shown 

in Table 9 and the 33rd pit shell was selected as the ultimate pit limit. 
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Table 9 Pushbacks 

Pushback Period (Year) Pit Shell 

1 The first 4 years Pit 8 

2 The next 5 years Halfway through Pit 9 

3 The next 4 years Until the end of Pit 9 

4 Until the end of LOM (18 years) Pit 33 (UPL) 

 

3.4.2. Scheduling 

The scheduling step was run using Whittle’s Milawa NPV option, which aims at maximizing the net 

present value of the project. The scheduling graph and the scheduling outputs are given in Figure 3 and 

Table 10, respectively. 

 

Figure 3 Scheduling graph 

The pushbacks as well as the UPL were then transferred back to Maptek Vulcan to visualize the 

progress of the open pit operation as shown in Figure 4. 
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Figure 4 Progress of the open pit operation 

Table 10 Scheduling outputs and net present value of the project 

Period 
(year)        

Tonne 
Input 
(kt) 

Waste 
Tonne 

(kt) 

Strip 
Ratio 

Grade 
Input  

Cu 
(%) 

Open Pit 
Cashflow 

(M$) 

Open Pit 
Cashflow 

Discounted 
(M$) 

Open Pit 
Cumulative 

Cashflow 
Discounted 

(M$) 

1 8 29,992 999.99 0.5496 -82 -75 -75 

2 1,209 58,791 48.64 0.4697 -128 -106 -181 

3 15,085 74,915 4.97 0.4039 132 99 -82 

4 80,000 40,000 0.5 0.5284 2,497 1,706 1,624 

5 12,420 107,580 8.66 0.6732 256 159 1,783 

6 345 119,655 347 0.4476 -320 -181 1,603 

7 5,895 114,105 19.36 0.3713 -198 -101 1,501 

8 24,847 95,153 3.83 0.3831 252 118 1,619 

9 51,338 68,662 1.34 0.4085 980 415 2,034 

10 78,515 41,485 0.53 0.4252 1,780 686 2,721 

11 79,996 40,004 0.5 0.4221 1,799 631 3,351 

12 79,768 40,232 0.5 0.5578 2,682 854 4,206 

13 71,090 48,910 0.69 0.506 2,052 594 4,800 

14 5,239 114,761 21.91 0.3258 -232 -61 4,739 

15 17,305 102,695 5.93 0.3873 81 19 4,758 

16 35,360 84,640 2.39 0.5208 898 195 4,954 

17 77,410 42,590 0.55 0.4324 1,797 355 5,309 

18 58,291 13,295 0.23 0.512 1,835 339 5,648 
        

   Total 16,081 5,648 5,648 

 

3.5. Mineral Reserve Statement and NPV  
As shown in Table 10, the discounted net present value of the project was calculated by Whittle as 

US$ 5,648M. In Whittle, different options (e.g. Milawa Balanced, which aims at establishing a balance 
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between the open pit production rate and the capacity of the mineral processing plant) can be selected 

based on the mine planning strategy of the project and different NPV values can be obtained. 

After completing the pit optimization and scheduling process in Whittle, the UPL was imported to 

Maptek Vulcan to carry out mineral reserve calculations. The measured and indicated blocks inside the 

UPL were labelled as proven and probable reserves, respectively. The results are given in Table 11 for the 

case without a threshold and in Table 12 for the case where a threshold of Cu grade greater than and 

equal to 0.15% was applied. Figure 5 shows the proven and probable blocks within the UPL for the case 

with a threshold of Cu ≥ 0.15%. 

 

Table 11 Mineral reserve statement (without a threshold) 

Domain 

PROVEN RESERVE PROBABLE RESERVE TOTAL PROVEN & PROBABLE 

# of 
Blocks 

Ore 
(kt) 

Mean 
Grade 
Cu % 

Metal 
Content 

(kt) 

# of 
Blocks 

Ore 
(kt) 

Mean 
Grade 
Cu % 

Metal 
Content 

(kt) 

# of 
Blocks 

Ore 
(kt) 

Mean 
Grade 
Cu % 

Metal 
Content 

(kt) 

520 172,347 465,337 0.488 2,270.84 32,645 88,142 0.514 453.05 204,992 553,478 0.492 2,723.89 

530 5,700 15,390 0.454 69.87 1,023 2,762 0.415 11.46 6,723 18,152 0.448 81.33 

532 1,918 5,179 0.759 39.31 1,901 5,133 0.709 36.39 3,819 10,311 0.734 75.70 

540 8,172 22,064 0.408 90.02 3,478 9,391 0.461 43.29 11,650 31,455 0.424 133.31 

560 728 1,966 0.648 12.74 561 1,515 0.647 9.80 1,289 3,480 0.648 22.54 

566 16,128 43,546 0.888 386.68 6,384 17,237 0.749 129.10 22,512 60,782 0.849 515.79 

577 1,315 3,551 0.318 11.29 28 76 0.317 0.24 1,343 3,626 0.318 11.53 

580 723 1,952 0.365 7.13 176 475 0.366 1.74 899 2,427 0.365 8.86 

599 4,614 12,458 0.345 42.98 93 251 0.307 0.77 4,707 12,709 0.344 43.75 

Total 211,645 571,442 0.513 2,930.86 46,289 124,980 0.549 685.85 257,934 696,422 0.519 3,616.71 

 

 

Table 12 Mineral reserve statement with a threshold (Cu grade ≥ 0.15%) 

Domain 

PROVEN RESERVE PROBABLE RESERVE TOTAL PROVEN & PROBABLE 

# of 
Blocks 

Ore 
(kt) 

Mean 
Grade 
Cu % 

Metal 
Content 

(kt) 

# of 
Blocks 

Ore 
(kt) 

Mean 
Grade 
Cu % 

Metal 
Content 

(kt) 

# of 
Blocks 

Ore 
(kt) 

Mean 
Grade 
Cu % 

Metal 
Content 

(kt) 

520 170,785 461,120 0.491 2,264.10 32,492 87,728 0.516 452.68 203,277 548,848 0.495 2,716.78 

530 5,700 15,390 0.454 69.87 1,023 2,762 0.415 11.46 6,723 18,152 0.448 81.33 

532 1,918 5,179 0.759 39.31 1,899 5,127 0.710 36.40 3,817 10,306 0.735 75.71 

540 8,172 22,064 0.408 90.02 3,478 9,391 0.461 43.29 11,650 31,455 0.424 133.31 

560 728 1,966 0.648 12.74 561 1,515 0.647 9.80 1,289 3,480 0.648 22.54 

566 16,127 43,543 0.888 386.66 6,384 17,237 0.749 129.10 22,511 60,780 0.849 515.76 

577 1,315 3,551 0.318 11.29 28 76 0.317 0.24 1,343 3,626 0.318 11.53 

580 723 1,952 0.365 7.13 176 475 0.366 1.74 899 2,427 0.365 8.86 

599 4,613 12,455 0.345 42.97 93 251 0.307 0.77 4,706 12,706 0.344 43.74 

Total 210,081 567,219 0.516 2,924.08 46,134 124,562 0.550 685.49 256,215 691,781 0.522 3,609.57 

  



 

Annual Report 2021 
Paper 2021-01 

 
 

 
© Predictive Geometallurgy and Geostatistics Lab, Queen’s University              76 

 

  

 

 

  

Figure 5 Proven and probable blocks within the open pit (Cu grade ≥ 0.15%) 
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4. Conclusions 
Mine planning is one of the most important operational steps in achieving strategic objectives of a 

mining project. The entire mine planning process should be intently conducted with a very high level of 

detail and accuracy as there are already many uncertainties about the mining value chain. In this paper, 

the process of mine planning was outlined with a quick guide, which includes the steps for pit 

optimization, scheduling and mineral reserve statement. With the help of a case study, the methodology 

was applied on a block model, which was obtained through resource estimation studies performed by 

using a synthetic mineral deposit, and it was explained how the involved parameters can be used during 

the performance of mine planning. 

The stages presented include the selection of the ultimate pit limit, which results from the application 

of the Lersch-Grossmann algorithm and uses undiscounted value. The selection of the ultimate pit limit 

should consider the risk of extending the life of the mine additional years, versus the value added by the 

additional ore. The time value of money reduces the present value of future resources, therefore, typically 

the ultimate pit limit is not the one that maximizes the undiscounted value. Once the UPL is selected, the 

pushbacks need to be determined, which provide the direction in which the pit evolves over time. These 

pushbacks should be large enough to contain several years of production and should be large so the pit 

can be expanded from one phase to the next with enough space to create working benches safely. Finally, 

the yearly schedule must account for a sustained ore feed to the processing plant, while maintaining a 

relatively steady stripping ratio, to facilitate the operation. Different optimization approaches are 

available for this purpose.   
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A Simple Implementation Example of SVC1 
Koruk, Kasimcan (kasimcan.koruk@queensu.ca) 

Abstract 
Support Vector Machines (SVM) is a powerful method in the world of machine learning, 
because it can handle complex regression and classification problems. Today, many 
machine learning libraries offer robust modules for several methods, and Scikit-learn’s 
Support Vector Classifier (SVC) is one of them. This article’s objective is to determine 
the boundaries of a binary-class problem using SVC. In this context, the article shows a 
simple example of SVC on a 3-D drillhole data. To see the potential of SVC, it is applied 
on 3D pseudo-data which are comprised of composite samples of vertical drillholes 
distributed homogenously in space. Cross-validation is applied on the data to 
determine the optimum parameters of the method. Posterior probabilities are 
obtained thanks to Platt’s method embedded in SVC module. The data is split into train 
and test datasets to assess the accuracy of the model. The article shows that SVC can 
provide complex and accurate models at a cost of possible misclassifications of outliers 
in the multi-dimensional space. 

 

1. Introduction 
Support Vector Machine (SVM) is a powerful method for machine learning because it can handle 

complex regression and classification problems (Bishop, 2006) and it has been a popular method for many 

years (Géron, 2017). The name of SVM comes from the subset of training samples, known as support 

vectors, utilized in the decision function. Support vectors let computer use less amount of training subsets, 

and thus the model becomes memory efficient (Pedregosa et al., 2011). In the case of a classification 

problem, support vectors optimize class margins to a maximum possible span. To do this, SVM utilizes a 

complex mathematical algorithm. In the following subsections, first the mathematics behind SVM are 

explained in a simple manner, then an implementation of SVC on a simple drillhole data is shown with the 

details of programming in Python. SVC is a strong classification module offered by Scikit-learn library in 

Python. An important notice for the implementation is that posterior probability results are obtained from 

SVC, which is not possible normally. Although there are some earlier approximations to compute posterior 

probability of SVM, Platt (1999) succeeded to obtain a better posterior probability using a sigmoid model. 

The method of Platt (1999) to obtain posterior probability is embedded in SVC of Scikit-learn, and it is 

activated in the implementation of SVC.  

  

 
1 Cite as: Koruk K (2021) A Simple Implementation Example of SVC, Predictive Geometallurgy and Geostatistics 

Lab, Queen’s University, Annual Report 2021, paper 2021-07, 79-87. 
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2. Support Vector Machines 

2.1. Theoretical Review of SVM 
The mathematics behind SVM can be challenging for a learner. The best approach to understand the 

logic of SVM is to start from a simple two-class and two-parameter case. For this simple case, SVM model 

takes the linear form 

 𝑦(𝑥𝑛) = 𝑤𝑇Φ(𝑥𝑛) + 𝑏 (1) 
 

Where 𝑥𝑛 is training input from 1 to N number of inputs, y(xn) is target classes, Φ(xn) is a fixed 

transformation function of x, wT is a coefficient vector which is maximizing the distance between two 

classes and b is the parameter to control the bias (Bishop, 2006). The equation is quite similar to logistic 

regression technique, however the main difference between logistic regression and SVM is that SVM 

maximizes the distance between classes with the help of margins at each side of the class boundary (Figure 

1). The samples located on these margins are called support vectors.  

Going back to the equation, SVM tries to approximate best values to the unknowns, wT and b, to 

maximize the margins of the boundary. Optimum condition is provided when 1/‖𝑤‖ is maximized. If 

classification can be performed without letting any misclassification, the classification is called hard 

margin classification like in Figure 1. In its simplest manner, the problem takes the form 

 𝑡𝑛(𝑤𝑇Φ(𝑥𝑛) + 𝑏) = 1 (2) 
 

where 𝑡𝑛 is target for samples from 1 to N number of samples. 

 

Figure 1 Hard margin linear SVM classification 

However, in most cases hard margin classification is not possible. At this point, soft margin 

classification comes as a solution. Soft margin classification lets the model misclassify some samples to 

reach the optimum condition (Figure 2). To make misclassification possible, slack variables, ξn, are 

introduced into the equation (Bishop, 2006). ξn = 0 when data points are correctly classified, and the rest 

is ξ𝑛 = |𝑡𝑛 − 𝑦(𝑥𝑛)|, meaning that samples located on boundary or samples passing boundary are 

penalized up to 1. After the introduction of slack variables, the classification problem takes the form: 

 𝑡𝑛𝑦(𝑥𝑛)  ≥ 1 −  ξ𝑛 (3) 
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Theoretically, minimizing the summation of condition (3) for n from 1 to N number of samples can 

provide the best classification: 

 
𝑚𝑖𝑛 ∑ ξ𝑛 +

1

2
‖𝑤‖2

𝑁

𝑛=1

  (4) 

 

The equation (4) is scaled by a parameter C, and C, with constraint of being higher than 0, regularizes 

the complexity of the model. 

 

Figure 2 Soft margin linear SVM classification; encircled samples are misclassified samples 

So far, the mathematical explanation of SVM is done as simple as possible with focus on linearly 

separable class problems. However, most of the real scenarios require non-linear solutions with quadratic 

function problems. Detailed explanation for quadratic function problems can be found in Bishop (2006). 

For the sake of an easier comprehension, the problem is kept simple. However, it is worth to mention 

kernel functions to better understand the non-linear solutions. The transformation functions we called 

earlier Φ(Xn) are kernel functions. Technically, Kernel functions works as if more features are added to 

sample spaces to make classes separable (Géron, 2017). Most popular kernel functions are tabulated in 

Table 1 below: 

Table 1 Types of kernel functions 

Kernel Types Function 

Linear Kernel 
 

Polynomial Kernel 
 

Radial Basis Kernel 
 

Sigmoid Kernel  
  

Linear kernel, polynomial and radial basis kernel are derived from same the equation. While d equals 

1 in polynomial kernel, polynomial kernel becomes linear kernel. Increasing d can be considered as 

increasing the amount of feature space in the training process. If d approximates to ∞, polynomial kernel 

approximates to radial basis function. The approximation is performed by making use of Taylor Expansion 

Series. Fundamentally, employing radial basis function can yield similar but much faster performance 

compared to polynomial kernel when d is ∞. Therefore, radial basis function (RBF) is preferred on the 

implementation of SVC. 

𝑘(𝑥, 𝑥′) = 𝑥𝑇𝑥′ 

𝑘(𝑥, 𝑥′) = (𝑥𝑇𝑥′ + 𝑟)𝑑  

𝑘(𝑥, 𝑥′) = 𝑒(−𝛾‖𝑥−𝑥′‖
2

) 

𝑘(𝑥, 𝑥′) = tanh(𝛾(𝑥𝑇𝑥′) + 𝑟) 
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Classifiers involving posterior probability are very useful in target recognition (Platt, 1999). Platt 

(1999) offered a modification to a previous multinomial likelihood non-sparse machine method. Platt 

offers sigmoid function for probabilities: 

 
𝑃(𝑦 = 1|𝑦(𝑥𝑛)) =

1

1 + exp (𝐴 𝑦(𝑥𝑛) + 𝐵)
 

(5) 

 

where 𝑦(𝑥𝑛) is the equation (1), and A and B are the parameters found by minimizing a cross-entropy 

error function: 

 min − ∑ 𝑡𝑛 log(𝑝𝑛) + (1 − 𝑡𝑛)log (1 − 𝑝𝑛)

𝑛

  (6) 

 

where 𝑝𝑖  is equation (5). The method of Platt (1999) to obtain posterior probability is embedded in SVC 

of Scikit-learn, and it is activated in the implementation of SVC. 

2.2. Implementation of SVC on a Simple Data 
Jupyter notebook is employed to implement SVC. SVC is a fully developed module, and it offers 

solutions to some problems like unbalanced class problems. The critical parameters shaping models are 

regularization parameter C and gamma. The parameter C practically controls overfitting of the data. The 

parameter C with low values makes the model smooth, and C with high values may cause overfitting. 

Gamma defines how far a sample can have influence on the model. A low gamma makes the model 

general, and a large gamma can cause individuality of samples.  

For the implementation of SVC, a 3-D pseudo drillhole data is created on which SVC is applied. The 

data is comprised of 56 vertical drillholes. Number of drillholes along East and North axes are 8 and 7 

respectively. Each drillhole has 25 composite samples with 2 meter-length with total of 1400 samples in 

the data, and samples are classified under 2 classes: host rocks as -1 and ores as 1 (Figure 3). Summary 

statistics of the data can be seen in Table 2. 

 

Figure 3 Distribution of pseudo data in the 3-D space. Data is illustrated using Plotly. Class 1 and -1 are shown with yellow 
and blue colors respectively.  
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Table 2 Summary statistics of the data 

 Count Mean St. 
Dev. 

Min. 25% 50% 75% Max. 

East 1400 72.00 41.258 9.0 40.5 72.0 103.5 135.0 
North 1400 53.00 30.011 8.0 23.0 53.0 83.0 98.0 

Elevation 1400 26.00 14.427 2.0 14.0 26.0 38.0 50.0 
Value 1400 -0.55 0.833 -1 -1 -1 -1 1 

 

The variables East, North and Elevation are utilized for training, and the variable Class is employed for 

target. The samples are split into train and test datasets to check accuracy of the model. Test ratio of the 

dataframe is set as 0.25. At the preprocessing stage, standardization is applied on the training data before 

fitting the data to the model. Class weight of SVC is set to balanced to consider the imbalanced ratio of 

classes while modelling. Normally, SVM is not capable of predicting probability, however SVC offers 

probability prediction using Platt’s method (Platt, 1999). During modelling, prediction probability is also 

activated. To apply SVC, cross validation is applied first to determine ideal parameters. Cross validation is 

performed for the values and conditions expressed in Table 3. The optimum parameters determined for 

C and gamma are 0.1 and 5 respectively. However, C is increased slightly, and it was chosen as 1 to avoid 

high regularity effect. 

Table 3 Cross-validation parameters of SVC 

Parameters Cross-Validation 

C 0.1 0.5 1 10 100 1000 
 

Gamma 5 2 1 0.1 0.01 0.001 0.0001 

 

Time spent for the modelling was less than 1 second, meaning that training time is not a concern for 

SVC especially for such a simple dataset. The result of the model is both successful visually (Figure 4a) and 

accuracy according to confusion matrix (Figure 4b). Figure 4a shows distribution of probabilities and ore 

samples of drillholes (blue dots). As seen in Figure 4a high probability zones correspond to the ore 

samples.  Both accuracy of class -1 and 1 are over 85% (Figure 4b), and overall accuracy is 88% which is 

quite promising. 
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Figure 4 (a) 3-D visualization of probabilities and (b) confusion matrix of prediction results 

To better investigate the model, cross-sections are created along North axis at each line of mesh grids. 

Two of the cross-sections overlain by drillholes are illustrated in Figure 5. Background color shows the 

map of probability. Blue and yellow crosses are host rock and ore samples of drillholes, respectively, and 

green circles show support vectors. For most of the areas, the model represents drillhole samples well. 

However, notice that there are some areas intended to be misclassified in terms of probability, which is 

desirable. 
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Figure 5 Cross-sections at North 54m (a) and 69m (b). 

2.3. Scripts for Cross-sections 
For illustration purposes, the library Plotly and Pyplot module of matplotlib are employed. Plotly is 

utilized for dynamic 3-D illustrations, and Pyplot is utilized for 2-D cross-sections. An automated script is 

written to create dataframes of a series of cross-sections (Figure 6). The dataframes created after the 

script shown in Figure 6 are utilized in a semi-automated script (Figure 7) which is written to plot cross-

sections shown in Figure 5. 
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Figure 6 Script written to create dataframes of a series of cross-sections 

 

Figure 7 Script written to plot cross-sections 

3. Discussion and Conclusion 
Sci-kit learn offers a strong module for SVM. The documentation of SVC is very strong; therefore, all 

the answers can be found to any technical questions that arise during the application step. Moreover, the 

options like imposing the imbalance of classes, and posterior probabilities makes SVC valuable. The time 

spent on training was less than 1 second for a data set with 1400 samples, which is perfect for quick 

decision-making. Yet, considering training time increases exponentially, SVC still can be time-demanding 

for huge drillhole datasets. Again, the simple scenario was based on a binary class problem. When the 

number of targets is higher than 2, training becomes demanding for SVC since modelling scheme is not 

traditional like some other classifiers, e.g., decisiontreeclassifier. Therefore, multiclass problems can be 

demanding for SVC (Pedregosa et al., 2011). Although probabilities are accurate for the example, it is also 

important to notice that Sci-kit learn addresses that probability prediction has some issues (Pedregosa et 

al., 2011), therefore Platt’s method can need verification and validation in real and more complex 

scenarios. 
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SVC is successfully applied to simple data. However, there are some points worth to mention about 

choosing the correct parameters and functions. Regularity of the model is an important concern. An 

overfitted model can be deceptive. Therefore, the regularity parameter was kept slightly higher than the 

optimum value obtained by cross-validation to prevent overfitting. Moreover, how the accuracy is 

determined for cross-validation is also important. A balanced accuracy can be more informative in terms 

of determining the optimum parameters. Another point, RBF as a kernel function is robust, however other 

kernel functions can also be effective under different scenarios. Lastly, analyzing and observing the results 

are at least as important as the accuracy of the model. To better observe the model, cross-sections are 

created along North axis. However, cross-sections created with different angles and directions can be 

required for some other cases. Therefore, either more developed cross-section modules can be utilized 

for the complex scenarios, or the scripts shared in the articles can be improved. 

Overall, SVC proved that it can model a simple dataset. However, it is also important to notice that 

the application of SVC on a real drillhole data can be much more demanding. 
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Relevance Vector Machines: An Introduction1 
Koruk, Kasimcan (kasimcan.koruk@queensu.ca) 

Abstract 
Support Vector Machines (SVM) is a well-known machine learning method that has 
been available for many years. Although SVM offers a strong solution for machine 
learning problems combining generalization properties with sparse kernel technique, 
it normally does not provide posterior probabilities. As an alternative, Relevance Vector 
Machine (RVM) offers a Bayesian formulation to classification and regression problems. 
RVM is a promising machine learning method and open to new developments. This 
article reviews some basic principles of RVM, and it summarizes advantages and 
disadvantages of the method in comparison to SVM. The article also compares RVM 
and SVM according to the results of applications on a real drillhole dataset. The 
applications shows that the biggest challenge of RVM to be overcome is training time 
for huge datasets. 

 

1. Introduction 
Over-fitting is generally the main challenge for classification problems. SVM is one of the valid 

supervised learning methods which can handle over-fitting with minimum misclassification and maximum 

possible margins thanks to its generalization properties with sparse kernel technique (Tipping, 2001). SVM 

has become a popular method with several application examples in the literature (Tipping, 2000; Géron, 

2017). With the help of support vectors utilized in decision functions, SVM provides sparsity to the 

solutions of machine learning problems.  

Although SVM is a strong decision machine, it does not output posterior probabilities and the sparsity 

of SVM is limited, because the number of support vectors can increase linearly as the number of training 

data increases (Tipping 2000). As an alternative, Relevance Vector Machine (RVM) offers sparser 

solutions, and more importantly it offers a Bayesian formulation to classification problems (Bishop, 2006). 

RVM principally possesses the structure of SVM with some modifications. The article underlines the 

modifications and summarizes the differences between RVM and SVM in terms of formulation. The article 

also compares RVM and SVM according to the results of applications on a real drillhole dataset. 

2. Relevance Vector Machines 

2.1. Theoretical Review of RVM 
Fundamentals of RVM are presented by Tipping (2000). RVM is fundamentally the same as SVM 

considering the functional form: 

 
1 Cite as: Koruk K (2021) Relevance Vector Machines: An Introduction, Predictive Geometallurgy and 

Geostatistics Lab, Queen’s University, Annual Report 2021, paper 2021-08, 88-92. 
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𝑦(𝑥) = ∑ 𝑤𝑛𝑘(𝑥, 𝑥𝑛) + 𝑏

𝑁

𝑛=1

  (1) 

The main difference is the introduction of a new hyper-parameter α which is assigned to each weight 

vector 𝑤𝑛. Posterior probability of the targets, t or y(x), is given by 

 
𝑝(𝑡|𝑋, 𝑤, 𝛽) = ∏ 𝑝(𝑡𝑛|𝑥𝑛, 𝑤, 𝛽−1)

𝑁

𝑛=1

  (2) 

where β=σ-2. With these newly assigned hyper-parameters α, the posterior probability of the weight takes 

the form 

 
𝑝(𝑤|𝛼) = ∏ 𝑁(𝑤𝑖|0, 𝛼𝑖

−1)

𝑀

𝑛=1

  (3) 

After an initial value to hyper-parameters α and β, RVM predicts the probability iteratively. With each 

iteration, α and β are aimed to be maximized. As the hyper-parameters approximate to maximum values, 

the weights approximate to zero mean and covariance, and thus become redundant on the probability 

prediction. The rest of the vectors with non-zero weights control the model, and they are called ‘relevance 

vector’. Unlike SVM, relevance vectors are not necessarily located on the boundary (Figure 1).  
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Figure 1 A cross-section of RVM model showing Bayesian probability overlain by training samples (composite drillhole 
samples) 

While RVM looks more promising compared to SVM, there are some theoretical drawbacks of RVM 

worth to mention. All advantages and disadvantages of the RVM are listed in table below. 

Table 1 Comparison of RVM and SVM 

Advantages 
RVM can make probability prediction. 
Better than SVM when number of classes is more than two. 
No need for cross-validation because there is no regularization parameter C. 
Fewer decision functions because most of the weights of samples approximate to zero. 
Disadvantages 
More time for the training step. 
Computation cost increases exponentially as number of classes increases. 

2.2. Application of RVM and SVM 
RVM and SVM are applied on a real drillhole data to make a tangible comparison. The comparison 

was based on the time spent on the training and accuracy of prediction results. Accuracy of the 

probabilities are left aside to further studies. The information about drillhole data is kept simple for the 
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sake of the privacy of the project. The data is huge with more than 10000 binary-class samples. Ore 

samples are classified as 1, and the rest of the samples are classified as -1. When RVM is applied on the 

data directly, the training step lasts for hours and even days. To decrease the time spent on the training 

step, RVM and SVM are applied on a specific zone of the data narrowed to 1616 samples. The ratio of ore 

samples over the total samples is 12.19%. The data are split into training and test groups to assess the 

accuracy with 25% ratio. 

SVM is applied on the data using SVC module of Scikit-learn (Pedregosa et al., 2011). The critical 

parameter shaping a model is gamma and regularization parameter C. Gamma defines how far a sample 

can have influence on the model. A low gamma makes the model general, and a large gamma can cause 

individuality of samples. The parameter C with low values makes the model smooth, and C with high 

values may cause overfitting. To apply SVC, cross validation is applied first to determine ideal parameters. 

Cross validation is performed to determine optimum parameters, then C and gamma are determined as 

1000 and 5, respectively. Moreover, imbalance between the classes is taken into account using an option 

embedded in the module. RVM trials are done using the module EMRVC of the library sklearn-rvm 0.1.1, 

compiled by a university research group of King’s College London. The project group claims that the library 

is compiled according to the implementation of Tipping (2000), and they adapted the API of scikit-learn 

to the module. As stated in the previous section, there is no parameter C in RVM. Gamma is determined 

equal to 5 as the final decision. 

The results are illustrated in confusion matrices (Figure 2). The result of SVC (Figure 2b) is relatively better 

than that of EMRVC (Figure 2a), considering accuracy of ore samples. Predictions on ore samples increases 

up to 76% (Figure 2c) when the imbalance is imposed on the SVC model, at the cost of slightly losing 

accuracy of host rock prediction. On the other hand, SVC showed clearly better performance compared 

to EMRVC in terms of training time. Even when the cross-validation is considered, the time spent on the 

training was only 5 seconds for the case of SVC. However, training took 6 minutes to finalize the training 

using EMRVC.  

 

Figure 2 Accuracy of the results of (a) RVM, (b) SVM and (c) SVM with balanced class weight shown on confusion matrices 

3. Discussion and Conclusion 
RVM is theoretically a promising technique since it offers substantial developments to SVM. The 

sparsity of RVM is noteworthy considering the sparsity of SVM is limited. The absence of regularization 

parameter frees RVM from cross-validation step, which can be a time-consuming step for machine 
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learning methods. Probabilistic outputs make RVM again valuable in the world of machine learning. 

Although RVM offers the advantages specified above, RVM has some practical obstacles to overcome 

against SVM. The application showed that training time spent by RVM is roughly 50 times more than the 

time spent by SVM. This problem is one of the most important obstacles to overcome for RVM. While the 

regularization parameter C requires cross-validation, it also offers higher control to the SVM which is not 

the case for RVM. The necessary changes on C made SVM model slightly more accurate compared to RVM. 

Lastly, while the SVC of Sci-kit learn is a fully developed module with detailed documentation, EMRVC of 

sklearn-rvc is a module developed by a university project group and requires some improvements. 

Because SVC offers solution for imposing the imbalance of classes, much higher accuracy is obtained in 

terms of predicting ore samples. Developing the option of balanced class prediction is especially necessary 

for the real-world datasets. 

In conclusion, RVM has serious obstacles to overcome, and it requires some serious improvements 

before it displaces the position of SVM in the world of machine learning. 
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