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Relevance Vector Machines: An Introduction1 
Koruk, Kasimcan (kasimcan.koruk@queensu.ca) 

Abstract 
Support Vector Machines (SVM) is a well-known machine learning method that has 
been available for many years. Although SVM offers a strong solution for machine 
learning problems combining generalization properties with sparse kernel technique, 
it normally does not provide posterior probabilities. As an alternative, Relevance Vector 
Machine (RVM) offers a Bayesian formulation to classification and regression problems. 
RVM is a promising machine learning method and open to new developments. This 
article reviews some basic principles of RVM, and it summarizes advantages and 
disadvantages of the method in comparison to SVM. The article also compares RVM 
and SVM according to the results of applications on a real drillhole dataset. The 
applications shows that the biggest challenge of RVM to be overcome is training time 
for huge datasets. 

 

1. Introduction 
Over-fitting is generally the main challenge for classification problems. SVM is one of the valid 

supervised learning methods which can handle over-fitting with minimum misclassification and maximum 

possible margins thanks to its generalization properties with sparse kernel technique (Tipping, 2001). SVM 

has become a popular method with several application examples in the literature (Tipping, 2000; Géron, 

2017). With the help of support vectors utilized in decision functions, SVM provides sparsity to the 

solutions of machine learning problems.  

Although SVM is a strong decision machine, it does not output posterior probabilities and the sparsity 

of SVM is limited, because the number of support vectors can increase linearly as the number of training 

data increases (Tipping 2000). As an alternative, Relevance Vector Machine (RVM) offers sparser 

solutions, and more importantly it offers a Bayesian formulation to classification problems (Bishop, 2006). 

RVM principally possesses the structure of SVM with some modifications. The article underlines the 

modifications and summarizes the differences between RVM and SVM in terms of formulation. The article 

also compares RVM and SVM according to the results of applications on a real drillhole dataset. 

2. Relevance Vector Machines 

2.1. Theoretical Review of RVM 
Fundamentals of RVM are presented by Tipping (2000). RVM is fundamentally the same as SVM 

considering the functional form: 
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𝑦(𝑥) = ∑ 𝑤𝑛𝑘(𝑥, 𝑥𝑛) + 𝑏

𝑁

𝑛=1

  (1) 

The main difference is the introduction of a new hyper-parameter α which is assigned to each weight 

vector 𝑤𝑛. Posterior probability of the targets, t or y(x), is given by 

 
𝑝(𝑡|𝑋, 𝑤, 𝛽) = ∏ 𝑝(𝑡𝑛|𝑥𝑛, 𝑤, 𝛽−1)

𝑁

𝑛=1

  (2) 

where β=σ-2. With these newly assigned hyper-parameters α, the posterior probability of the weight takes 

the form 

 
𝑝(𝑤|𝛼) = ∏ 𝑁(𝑤𝑖|0, 𝛼𝑖

−1)

𝑀

𝑛=1

  (3) 

After an initial value to hyper-parameters α and β, RVM predicts the probability iteratively. With each 

iteration, α and β are aimed to be maximized. As the hyper-parameters approximate to maximum values, 

the weights approximate to zero mean and covariance, and thus become redundant on the probability 

prediction. The rest of the vectors with non-zero weights control the model, and they are called ‘relevance 

vector’. Unlike SVM, relevance vectors are not necessarily located on the boundary (Figure 1).  
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Figure 1 A cross-section of RVM model showing Bayesian probability overlain by training samples (composite drillhole 
samples) 

While RVM looks more promising compared to SVM, there are some theoretical drawbacks of RVM 

worth to mention. All advantages and disadvantages of the RVM are listed in table below. 

Table 1 Comparison of RVM and SVM 

Advantages 
RVM can make probability prediction. 
Better than SVM when number of classes is more than two. 
No need for cross-validation because there is no regularization parameter C. 
Fewer decision functions because most of the weights of samples approximate to zero. 
Disadvantages 
More time for the training step. 
Computation cost increases exponentially as number of classes increases. 

2.2. Application of RVM and SVM 
RVM and SVM are applied on a real drillhole data to make a tangible comparison. The comparison 

was based on the time spent on the training and accuracy of prediction results. Accuracy of the 

probabilities are left aside to further studies. The information about drillhole data is kept simple for the 
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sake of the privacy of the project. The data is huge with more than 10000 binary-class samples. Ore 

samples are classified as 1, and the rest of the samples are classified as -1. When RVM is applied on the 

data directly, the training step lasts for hours and even days. To decrease the time spent on the training 

step, RVM and SVM are applied on a specific zone of the data narrowed to 1616 samples. The ratio of ore 

samples over the total samples is 12.19%. The data are split into training and test groups to assess the 

accuracy with 25% ratio. 

SVM is applied on the data using SVC module of Scikit-learn (Pedregosa et al., 2011). The critical 

parameter shaping a model is gamma and regularization parameter C. Gamma defines how far a sample 

can have influence on the model. A low gamma makes the model general, and a large gamma can cause 

individuality of samples. The parameter C with low values makes the model smooth, and C with high 

values may cause overfitting. To apply SVC, cross validation is applied first to determine ideal parameters. 

Cross validation is performed to determine optimum parameters, then C and gamma are determined as 

1000 and 5, respectively. Moreover, imbalance between the classes is taken into account using an option 

embedded in the module. RVM trials are done using the module EMRVC of the library sklearn-rvm 0.1.1, 

compiled by a university research group of King’s College London. The project group claims that the library 

is compiled according to the implementation of Tipping (2000), and they adapted the API of scikit-learn 

to the module. As stated in the previous section, there is no parameter C in RVM. Gamma is determined 

equal to 5 as the final decision. 

The results are illustrated in confusion matrices (Figure 2). The result of SVC (Figure 2b) is relatively better 

than that of EMRVC (Figure 2a), considering accuracy of ore samples. Predictions on ore samples increases 

up to 76% (Figure 2c) when the imbalance is imposed on the SVC model, at the cost of slightly losing 

accuracy of host rock prediction. On the other hand, SVC showed clearly better performance compared 

to EMRVC in terms of training time. Even when the cross-validation is considered, the time spent on the 

training was only 5 seconds for the case of SVC. However, training took 6 minutes to finalize the training 

using EMRVC.  

 

Figure 2 Accuracy of the results of (a) RVM, (b) SVM and (c) SVM with balanced class weight shown on confusion matrices 

3. Discussion and Conclusion 
RVM is theoretically a promising technique since it offers substantial developments to SVM. The 

sparsity of RVM is noteworthy considering the sparsity of SVM is limited. The absence of regularization 

parameter frees RVM from cross-validation step, which can be a time-consuming step for machine 
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learning methods. Probabilistic outputs make RVM again valuable in the world of machine learning. 

Although RVM offers the advantages specified above, RVM has some practical obstacles to overcome 

against SVM. The application showed that training time spent by RVM is roughly 50 times more than the 

time spent by SVM. This problem is one of the most important obstacles to overcome for RVM. While the 

regularization parameter C requires cross-validation, it also offers higher control to the SVM which is not 

the case for RVM. The necessary changes on C made SVM model slightly more accurate compared to RVM. 

Lastly, while the SVC of Sci-kit learn is a fully developed module with detailed documentation, EMRVC of 

sklearn-rvc is a module developed by a university project group and requires some improvements. 

Because SVC offers solution for imposing the imbalance of classes, much higher accuracy is obtained in 

terms of predicting ore samples. Developing the option of balanced class prediction is especially necessary 

for the real-world datasets. 

In conclusion, RVM has serious obstacles to overcome, and it requires some serious improvements 

before it displaces the position of SVM in the world of machine learning. 
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