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A Simple Implementation Example of SVC1 
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Abstract 
Support Vector Machines (SVM) is a powerful method in the world of machine learning, 
because it can handle complex regression and classification problems. Today, many 
machine learning libraries offer robust modules for several methods, and Scikit-learn’s 
Support Vector Classifier (SVC) is one of them. This article’s objective is to determine 
the boundaries of a binary-class problem using SVC. In this context, the article shows a 
simple example of SVC on a 3-D drillhole data. To see the potential of SVC, it is applied 
on 3D pseudo-data which are comprised of composite samples of vertical drillholes 
distributed homogenously in space. Cross-validation is applied on the data to 
determine the optimum parameters of the method. Posterior probabilities are 
obtained thanks to Platt’s method embedded in SVC module. The data is split into train 
and test datasets to assess the accuracy of the model. The article shows that SVC can 
provide complex and accurate models at a cost of possible misclassifications of outliers 
in the multi-dimensional space. 

 

1. Introduction 
Support Vector Machine (SVM) is a powerful method for machine learning because it can handle 

complex regression and classification problems (Bishop, 2006) and it has been a popular method for many 

years (Géron, 2017). The name of SVM comes from the subset of training samples, known as support 

vectors, utilized in the decision function. Support vectors let computer use less amount of training subsets, 

and thus the model becomes memory efficient (Pedregosa et al., 2011). In the case of a classification 

problem, support vectors optimize class margins to a maximum possible span. To do this, SVM utilizes a 

complex mathematical algorithm. In the following subsections, first the mathematics behind SVM are 

explained in a simple manner, then an implementation of SVC on a simple drillhole data is shown with the 

details of programming in Python. SVC is a strong classification module offered by Scikit-learn library in 

Python. An important notice for the implementation is that posterior probability results are obtained from 

SVC, which is not possible normally. Although there are some earlier approximations to compute posterior 

probability of SVM, Platt (1999) succeeded to obtain a better posterior probability using a sigmoid model. 

The method of Platt (1999) to obtain posterior probability is embedded in SVC of Scikit-learn, and it is 

activated in the implementation of SVC.  

  

 
1 Cite as: Koruk K (2021) A Simple Implementation Example of SVC, Predictive Geometallurgy and Geostatistics 

Lab, Queen’s University, Annual Report 2021, paper 2021-07, 79-87. 
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2. Support Vector Machines 

2.1. Theoretical Review of SVM 
The mathematics behind SVM can be challenging for a learner. The best approach to understand the 

logic of SVM is to start from a simple two-class and two-parameter case. For this simple case, SVM model 

takes the linear form 

 𝑦(𝑥𝑛) = 𝑤𝑇Φ(𝑥𝑛) + 𝑏 (1) 
 

Where 𝑥𝑛 is training input from 1 to N number of inputs, y(xn) is target classes, Φ(xn) is a fixed 

transformation function of x, wT is a coefficient vector which is maximizing the distance between two 

classes and b is the parameter to control the bias (Bishop, 2006). The equation is quite similar to logistic 

regression technique, however the main difference between logistic regression and SVM is that SVM 

maximizes the distance between classes with the help of margins at each side of the class boundary (Figure 

1). The samples located on these margins are called support vectors.  

Going back to the equation, SVM tries to approximate best values to the unknowns, wT and b, to 

maximize the margins of the boundary. Optimum condition is provided when 1/‖𝑤‖ is maximized. If 

classification can be performed without letting any misclassification, the classification is called hard 

margin classification like in Figure 1. In its simplest manner, the problem takes the form 

 𝑡𝑛(𝑤𝑇Φ(𝑥𝑛) + 𝑏) = 1 (2) 
 

where 𝑡𝑛 is target for samples from 1 to N number of samples. 

 

Figure 1 Hard margin linear SVM classification 

However, in most cases hard margin classification is not possible. At this point, soft margin 

classification comes as a solution. Soft margin classification lets the model misclassify some samples to 

reach the optimum condition (Figure 2). To make misclassification possible, slack variables, ξn, are 

introduced into the equation (Bishop, 2006). ξn = 0 when data points are correctly classified, and the rest 

is ξ𝑛 = |𝑡𝑛 − 𝑦(𝑥𝑛)|, meaning that samples located on boundary or samples passing boundary are 

penalized up to 1. After the introduction of slack variables, the classification problem takes the form: 

 𝑡𝑛𝑦(𝑥𝑛)  ≥ 1 −  ξ𝑛 (3) 
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Theoretically, minimizing the summation of condition (3) for n from 1 to N number of samples can 

provide the best classification: 

 
𝑚𝑖𝑛 ∑ ξ𝑛 +

1

2
‖𝑤‖2

𝑁

𝑛=1

  (4) 

 

The equation (4) is scaled by a parameter C, and C, with constraint of being higher than 0, regularizes 

the complexity of the model. 

 

Figure 2 Soft margin linear SVM classification; encircled samples are misclassified samples 

So far, the mathematical explanation of SVM is done as simple as possible with focus on linearly 

separable class problems. However, most of the real scenarios require non-linear solutions with quadratic 

function problems. Detailed explanation for quadratic function problems can be found in Bishop (2006). 

For the sake of an easier comprehension, the problem is kept simple. However, it is worth to mention 

kernel functions to better understand the non-linear solutions. The transformation functions we called 

earlier Φ(Xn) are kernel functions. Technically, Kernel functions works as if more features are added to 

sample spaces to make classes separable (Géron, 2017). Most popular kernel functions are tabulated in 

Table 1 below: 

Table 1 Types of kernel functions 

Kernel Types Function 

Linear Kernel 
 

Polynomial Kernel 
 

Radial Basis Kernel 
 

Sigmoid Kernel  
  

Linear kernel, polynomial and radial basis kernel are derived from same the equation. While d equals 

1 in polynomial kernel, polynomial kernel becomes linear kernel. Increasing d can be considered as 

increasing the amount of feature space in the training process. If d approximates to ∞, polynomial kernel 

approximates to radial basis function. The approximation is performed by making use of Taylor Expansion 

Series. Fundamentally, employing radial basis function can yield similar but much faster performance 

compared to polynomial kernel when d is ∞. Therefore, radial basis function (RBF) is preferred on the 

implementation of SVC. 

𝑘(𝑥, 𝑥′) = 𝑥𝑇𝑥′ 

𝑘(𝑥, 𝑥′) = (𝑥𝑇𝑥′ + 𝑟)𝑑  

𝑘(𝑥, 𝑥′) = 𝑒(−𝛾‖𝑥−𝑥′‖
2

) 

𝑘(𝑥, 𝑥′) = tanh(𝛾(𝑥𝑇𝑥′) + 𝑟) 
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Classifiers involving posterior probability are very useful in target recognition (Platt, 1999). Platt 

(1999) offered a modification to a previous multinomial likelihood non-sparse machine method. Platt 

offers sigmoid function for probabilities: 

 
𝑃(𝑦 = 1|𝑦(𝑥𝑛)) =

1

1 + exp (𝐴 𝑦(𝑥𝑛) + 𝐵)
 

(5) 

 

where 𝑦(𝑥𝑛) is the equation (1), and A and B are the parameters found by minimizing a cross-entropy 

error function: 

 min − ∑ 𝑡𝑛 log(𝑝𝑛) + (1 − 𝑡𝑛)log (1 − 𝑝𝑛)

𝑛

  (6) 

 

where 𝑝𝑖  is equation (5). The method of Platt (1999) to obtain posterior probability is embedded in SVC 

of Scikit-learn, and it is activated in the implementation of SVC. 

2.2. Implementation of SVC on a Simple Data 
Jupyter notebook is employed to implement SVC. SVC is a fully developed module, and it offers 

solutions to some problems like unbalanced class problems. The critical parameters shaping models are 

regularization parameter C and gamma. The parameter C practically controls overfitting of the data. The 

parameter C with low values makes the model smooth, and C with high values may cause overfitting. 

Gamma defines how far a sample can have influence on the model. A low gamma makes the model 

general, and a large gamma can cause individuality of samples.  

For the implementation of SVC, a 3-D pseudo drillhole data is created on which SVC is applied. The 

data is comprised of 56 vertical drillholes. Number of drillholes along East and North axes are 8 and 7 

respectively. Each drillhole has 25 composite samples with 2 meter-length with total of 1400 samples in 

the data, and samples are classified under 2 classes: host rocks as -1 and ores as 1 (Figure 3). Summary 

statistics of the data can be seen in Table 2. 

 

Figure 3 Distribution of pseudo data in the 3-D space. Data is illustrated using Plotly. Class 1 and -1 are shown with yellow 
and blue colors respectively.  
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Table 2 Summary statistics of the data 

 Count Mean St. 
Dev. 

Min. 25% 50% 75% Max. 

East 1400 72.00 41.258 9.0 40.5 72.0 103.5 135.0 
North 1400 53.00 30.011 8.0 23.0 53.0 83.0 98.0 

Elevation 1400 26.00 14.427 2.0 14.0 26.0 38.0 50.0 
Value 1400 -0.55 0.833 -1 -1 -1 -1 1 

 

The variables East, North and Elevation are utilized for training, and the variable Class is employed for 

target. The samples are split into train and test datasets to check accuracy of the model. Test ratio of the 

dataframe is set as 0.25. At the preprocessing stage, standardization is applied on the training data before 

fitting the data to the model. Class weight of SVC is set to balanced to consider the imbalanced ratio of 

classes while modelling. Normally, SVM is not capable of predicting probability, however SVC offers 

probability prediction using Platt’s method (Platt, 1999). During modelling, prediction probability is also 

activated. To apply SVC, cross validation is applied first to determine ideal parameters. Cross validation is 

performed for the values and conditions expressed in Table 3. The optimum parameters determined for 

C and gamma are 0.1 and 5 respectively. However, C is increased slightly, and it was chosen as 1 to avoid 

high regularity effect. 

Table 3 Cross-validation parameters of SVC 

Parameters Cross-Validation 

C 0.1 0.5 1 10 100 1000 
 

Gamma 5 2 1 0.1 0.01 0.001 0.0001 

 

Time spent for the modelling was less than 1 second, meaning that training time is not a concern for 

SVC especially for such a simple dataset. The result of the model is both successful visually (Figure 4a) and 

accuracy according to confusion matrix (Figure 4b). Figure 4a shows distribution of probabilities and ore 

samples of drillholes (blue dots). As seen in Figure 4a high probability zones correspond to the ore 

samples.  Both accuracy of class -1 and 1 are over 85% (Figure 4b), and overall accuracy is 88% which is 

quite promising. 



 
© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 84 

 

 

Figure 4 (a) 3-D visualization of probabilities and (b) confusion matrix of prediction results 

To better investigate the model, cross-sections are created along North axis at each line of mesh grids. 

Two of the cross-sections overlain by drillholes are illustrated in Figure 5. Background color shows the 

map of probability. Blue and yellow crosses are host rock and ore samples of drillholes, respectively, and 

green circles show support vectors. For most of the areas, the model represents drillhole samples well. 

However, notice that there are some areas intended to be misclassified in terms of probability, which is 

desirable. 
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Figure 5 Cross-sections at North 54m (a) and 69m (b). 

2.3. Scripts for Cross-sections 
For illustration purposes, the library Plotly and Pyplot module of matplotlib are employed. Plotly is 

utilized for dynamic 3-D illustrations, and Pyplot is utilized for 2-D cross-sections. An automated script is 

written to create dataframes of a series of cross-sections (Figure 6). The dataframes created after the 

script shown in Figure 6 are utilized in a semi-automated script (Figure 7) which is written to plot cross-

sections shown in Figure 5. 
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Figure 6 Script written to create dataframes of a series of cross-sections 

 

Figure 7 Script written to plot cross-sections 

3. Discussion and Conclusion 
Sci-kit learn offers a strong module for SVM. The documentation of SVC is very strong; therefore, all 

the answers can be found to any technical questions that arise during the application step. Moreover, the 

options like imposing the imbalance of classes, and posterior probabilities makes SVC valuable. The time 

spent on training was less than 1 second for a data set with 1400 samples, which is perfect for quick 

decision-making. Yet, considering training time increases exponentially, SVC still can be time-demanding 

for huge drillhole datasets. Again, the simple scenario was based on a binary class problem. When the 

number of targets is higher than 2, training becomes demanding for SVC since modelling scheme is not 

traditional like some other classifiers, e.g., decisiontreeclassifier. Therefore, multiclass problems can be 

demanding for SVC (Pedregosa et al., 2011). Although probabilities are accurate for the example, it is also 

important to notice that Sci-kit learn addresses that probability prediction has some issues (Pedregosa et 

al., 2011), therefore Platt’s method can need verification and validation in real and more complex 

scenarios. 
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SVC is successfully applied to simple data. However, there are some points worth to mention about 

choosing the correct parameters and functions. Regularity of the model is an important concern. An 

overfitted model can be deceptive. Therefore, the regularity parameter was kept slightly higher than the 

optimum value obtained by cross-validation to prevent overfitting. Moreover, how the accuracy is 

determined for cross-validation is also important. A balanced accuracy can be more informative in terms 

of determining the optimum parameters. Another point, RBF as a kernel function is robust, however other 

kernel functions can also be effective under different scenarios. Lastly, analyzing and observing the results 

are at least as important as the accuracy of the model. To better observe the model, cross-sections are 

created along North axis. However, cross-sections created with different angles and directions can be 

required for some other cases. Therefore, either more developed cross-section modules can be utilized 

for the complex scenarios, or the scripts shared in the articles can be improved. 

Overall, SVC proved that it can model a simple dataset. However, it is also important to notice that 

the application of SVC on a real drillhole data can be much more demanding. 
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