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Abstract 
Quantifying uncertainty in ore body modelling improves economic outcomes from 
mine development and operation. Simulation is a frequently utilized technique in 
geostatistics providing information on the level of uncertainty associated with 
estimated ore body properties at unsampled locations, both individually and in 
aggregate. Available simulation techniques do not allow for informed application of a 
random function model relying instead on: i) the assumption that the random function 
is MultiGaussian (as in sequential Gaussian simulation), ii) no assumption on the 
random function model (as in sequential indicator simulation), or iii) brute force 
inference of higher order statistics (multipoint simulation with machine learning). 
Disjunctive Kriging utilizes polynomial expansions of random function families to 
estimate parameters at unsampled locations. An algorithm has been developed to 
apply Disjunctive Kriging in sequential simulation using the Hermitian expansion of a 
Gaussian random function. Using the same conditioning information, simulation results 
closely match those from sequential Gaussian simulation. This suggests applying the 
algorithm with non Gaussian random function families and associated polynomial 
expansions will provide a valuable sequential simulation tool. 

 

1. Introduction 

1.1. Context in Mineral Resource Estimation 
 

Traditionally, the qualified person completing a Mineral Resource estimate applied kriging to arrive 

at a best estimate for mineral resource grade and tonnage. Kriging is a deterministic method unable to 

provide a relevant measure of uncertainty associated with its deterministic estimates. The qualified 

person would classify the mineral resource as measured, indicated, or inferred based on personal 

experience and industry association guidance related to drill hole spacing and deposit type. For example, 

in a copper porphyry setting drills holes of a certain spacing might result in indicated resources, while drill 

holes at slightly greater spacing would be inferred. These specific spacings differ depending on the type 

of ore body and geological setting. 

Simulation provides a quantification of uncertainty in resource modelling. This allows an estimator to 

arrive at a quantitative view of how probable it is that a given block has a given value (e.g., probability 

that grade of block is above cut off). This probabilistic estimate of uncertainty can be carried through the 

 
1 Cite as: Casson D., Ortiz J. M. (2021) Application of Disjunctive Kriging in Sequential Simulation, Predictive 
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mine design and operation to make better decisions, understanding the range of possible operational and 

financial outcomes and associated likelihood.  

Simulation infers the properties of the regionalized variable under study based on the available data 

samples. The accuracy of the resulting simulations as a predictor of outcomes and probabilities depends 

entirely on how well the inferred model matches the true properties of the regionalized variable. Said 

simply, the appropriateness of the chosen model for the variable under study will dictate the accuracy 

and usefulness of simulation results. 

1.2. Traditional Simulation Techniques 
 

Commonly applied simulation techniques include Sequential Gaussian Simulation and Sequential 

Indicator Simulation. As is described further below, both these sequential simulation methods require a 

random draw from an estimated Conditional Cumulative Distribution Function (“CCDF”) at unsampled 

locations. The CCDF, which is based on information in a neighborhood deemed to be relevant, reflects the 

probability that the unknown value at the location in question is below any value in its possible range. 

Simulation will not be successful if the CCDF is not accurate. Sequential Gaussian Simulation relies on the 

assumption that the regionalized variable under study is Multigaussian in nature. This is often not true. 

Simulation will also not be successful if it is not practical to implement. Sequential Indicator Simulation 

makes no assumption on the model of the variable under study but requires computation and modelling 

of many indicator variograms which makes it a cumbersome approach and challenging to implement in 

practice.  

The assumption of MultiGaussianity provides the theoretical basis for many methods in geostatistics. The 

specific indicator properties of a multipoint (multivariate) Gaussian variable (i.e., indicator variogram) can 

be used to define a Gaussian function for the local CCDF. These Gaussian local distribution functions 

determine the probabilities of potential values at the unsampled locations, providing a measure of “local” 

uncertainty. Sequential Gaussian Simulation (“SGS”) extends this approach to estimate global uncertainty 

amongst a population of unsampled locations, applying Monte-Carlo simulation along with the inferred 

local Gaussian CCDF’s at unsampled locations to arrive at a simulated point value. Sequential simulation 

takes a random path through unsampled locations and once a simulated value is determined at a given 

location, it is assumed fixed and incorporated into the CCDF’s for subsequently simulated unsampled 

locations. Repeating this sequential simulation provides multiple potential realizations of the unsampled 

locations creating, in aggregate, a measure of uncertainty of the entire unsampled set of locations. Such 

an approach is applied to create a measure of uncertainty related to grade and tonnage estimates, e.g., 

the probability across 1000 simulations that a given block is ore or waste. 

The Gaussian approach described above is in contrast to the indicator approach applied in Sequential 

Indicator Simulation (“SIS”) which makes no assumption regarding model function or parameters. While 

the indicator approach can account for non-symmetric distributions and/or non-diffusive distributions, it 

has several limitations described below (Machuca-Mory et al 2008): 

• Discretization and interpolation of the conditional CDF creates error. 
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• Cokriging of indicator thresholds (which is theoretically required) is not practical with a linear model 

of co-regionalization (challenging to limit cross and direct indicator variograms to linear combinations 

of specified families of models). 

• Tail behavior is difficult to model given sparse relevant data points. 

The steps to sequential Gaussian simulation are described below. 

1. Decluster data to get representative distribution; 
2. Transform data to normal scores, based on the representative distribution; 
3. Visit nodes in a random path; 
4. At every node, search for nearby samples or previously simulated nodes; 
5. Krige the normal scores using samples and nodes (this requires the variogram model of the normal 

score transform of the original variable); 
6. Draw a value from the conditional distribution; 
7. Back transform the simulated value. 

The figure below adapted from Ortiz (2019) illustrates the key steps in SGS simulation. 

 

Normal scores of declustered sample values

σ

μ

Location to be simulated

Kriging neighborhood
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distribution at unsampled location
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Monte Carlo: draw a 
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the assume CDF value
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Sequential indicator simulation is non-parametric in nature. No assumptions are made regarding the bi-

variate distribution.  

The steps to sequential indicator simulation are described below. 

1. Visit nodes in a random path; 
2. At every node, search for nearby samples or previously simulated nodes; 
3. Select a number of threshold values for the variable in question;  
4. For each threshold: 

a. Code nearby known or simulated data points as “1” or “0” if they are below of above the 
threshold respectively; 

b. Apply simple kriging to these values (requires a variogram fit to the indicator data points); 
c. Result is probability that value at unsampled location is below the threshold; 

5. Interpolate the threshold-probability data points into a CDF curve; 
6. Draw a value from the conditional distribution. 

The figure below adapted from Ortiz (2019) illustrates the interpolation approach to modelling the CCDF 

using indicator kriging. 

 

  

1.3. Polynomial Expansions for Modelling Probability Density Functions and Cumulative 

Density Functions 
 

Determination of local conditional Probability Density Functions (“PDF’s”) is an important component of 

modern geostatistics. Conditional PDF’s (and corresponding Cumulative Distribution Functions or “CDF’s”) 

allow for simulation of an attribute at an unsampled location conditioned to the available and relevant 

data. The sequential simulation technique relies on a random draw from the CCDF at the unsampled 

location.  

Asymptotic expansions are a mathematical technique for approximating a function with finite variance by 

a weighted average of a family of functions related to a “developing distribution function” or random 

function family. This type of mathematical formulation can be applied to model CDF’s in situations where 

suitable developing distribution functions are selected. 
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In the first part of the twentieth century, significant research was completed on approximating empirical 

distributions with theoretical functions. In many cases, this work focused on the use of asymptotic 

expansions, in which the error of the approximation approaches zero as a parameter (the order) of the 

expansion approaches infinite (Wallace, 1958). The premise upon which these expansions are based is 

found in the Charlier Differential Series.  

A random function is completely described by its moments. For any random function, the moments can 

be defined with the moment generating function shown below.  

 
𝑀𝑋(𝑡) =  𝐸[𝑒𝑡𝑋]      (1) 

In a similar manner to the Moment Generating Function, a random variable and its distribution can be 

defined by its Characteristic Function “f(t)” or sometimes “φ(t)”. The Characteristic Function is similar to 

the Moment Generating Function. It resembles a Fourier Transform (but in complex conjugate) of the 

underlying random variable’s PDF. The expression is shown below. 

 
𝜑𝑋(𝑡) =  𝐸[𝑒𝑖𝑡𝑋]      (2) 

 

Cumulants are similar but not identical to moments. A random variable can be completely described by 

its cumulants or its moments. The cumulants are defined by the Cumulant Generating Function, which is 

the natural logarithm of the characteristic function. As a result, the characteristic functions can be written 

as the natural exponent of the cumulant generating function. This is shown below for a characteristic 

function “f(t)”. 

𝑓(𝑡) =  𝑒
[∑ 𝜅𝑟

(𝑖𝑡)𝑟

𝑟!
∞
𝑟=1 ]

      (3) 

Using the above expression for both an empirical characteristic function f(t) and a chosen theoretical 

characteristic function ψ(t), an expression may be defined to relate the theoretical and empirical 

characteristic functions in terms of the difference between cumulants of each (κr and γr respectively) as 

shown below.  

𝑓(𝑡) =  𝑒
[∑ (𝜅𝑟−𝛾𝑟)

(𝑖𝑡)𝑟

𝑟!
∞
𝑟=1 ]

𝜓(𝑡)     (4) 

If the PDF of the chosen theoretical distribution (random function family) referred to here as Ψ(x) and all 

of its derivatives are continuous and have finite variance (i.e., vanish in the extremes but are continuous 

otherwise), integration by parts is possible and therefore expression of the two PDF’s (theoretical and 

empirical) based on the difference between the cumulants is possible. This is shown below where “D” is 

the differential operator and comes from the integral relationship between probability distribution 

functions and associated characteristic functions.  

𝐹(𝑥) =  𝑒
[∑ (𝜅𝑟−𝛾𝑟)

(−𝐷)𝑟

𝑟!
∞
𝑟=1 ]

𝛹(𝑥)     (5) 
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By selecting a family of theoretical distributions with finite variance, we can create an expansion of the 

probability distribution function to be approximated based on the derivatives of the theoretical PDF (and 

associated CDF) selected and the differences between observed and theoretical cumulants. As noted by 

Mustapha and Dimitrakopolous (2010) “it is relatively easy in many statistical situations to determine 

moments, but it is extremely hard or impossible to determine the distributions themselves”.  

 

1.4. Review of Hermitian Polynomial Expansion 
 

The Edgeworth Approximation is a specific case of an asymptotic expansion, where the theoretical 

distribution function is selected to be the normal distribution (which satisfies the criteria of finite 

variance). In choosing the normal distribution we are not assuming that the empirical distribution to be 

modelled is truly Gaussian, we are simply choosing the normal distribution to base our expansion on. If 

the empirical were perfectly Gaussian then no expansion would be needed to write the empirical PDF in 

terms of the theoretical Gaussian PDF. Intuitively the closer the empirical distribution is to the theoretical 

the “better” the expansion should be (i.e., how close the expansion approximates the theoretical 

distribution for any given truncation of the expansion series). Once the choice of the Gaussian distribution 

is made for the theoretical developing function, the relationship between the cumulants can be further 

defined based on the theoretical cumulants of the normal distribution. The mean and variance of the 

empirical and theoretical distribution functions are set equal resulting in an expansion based on the 

difference of the higher order cumulants. The higher order cumulants of the theoretical normal 

distribution are zero which further simplifies the equation to depend only on higher order cumulants of 

the empirical distribution. The empirical cumulative distribution function to be approximated can be 

written as an expansion of a polynomial and the derivatives of the normal distribution as shown in the 

equation below based on the observed cumulants of the empirical distribution. Here the λ values are 

derived from the observed cumulant values of each order in the empirical data set. 

𝐹𝑛(𝑥) =  ф(𝑥) − 
𝜆3ф3(𝑥)

−6√𝑛
+ 

1

𝑛
 [

𝜆4ф4(𝑥)

24
+

𝜆3
2ф6(𝑥)

72
] + ⋯         (6) 

Given the unique relationship between the normal distribution and its derivatives, and its well-known 

representation in Hermite Polynomials, the Edgeworth Approximation can be rewritten as a function of 

Hermite Polynomials, h(n)(x), which is shown below for an expansion up to order 6.  

𝑒4(𝑥) =  𝜙(𝑥) [1 +
𝜅3ℎ3(𝑥)

6√𝑛
+

𝜅4ℎ4(𝑥)

24𝑛
+

𝜅3
2ℎ6(𝑥)

72𝑛
]         (7) 

The Hermite Polynomial of order n, h(n)(y), is defined in the below equation where g(y) is the standard 

gaussian pdf function.  

𝐻𝑛(𝑦) =  
1

√𝑛! 𝑔(𝑦)

𝑑𝑛𝑔(𝑦)

𝑑𝑦𝑛
         ∀𝑛 ≥ 0        (8) 
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The expression for calculating Hermite Polynomials can be simplified to a recursive formula as shown 

below, called Rodrigues Formula, where H0 = 1 and H1 = - y. 

𝐻𝑛+1(𝑦) =  −
1

√𝑛 + 1
𝑦𝐻𝑛(𝑦) − √

𝑛

𝑛 + 1
𝐻𝑛−1(𝑦)        ∀𝑛 ≥ 0       (9) 

𝑓(𝑦(𝑢)) =  ∑ 𝑓𝑛𝐻𝑛(𝑦(𝑢))

∞

𝑛=0

          (10) 

 

1.5. Practical Illustration of Modelling a Finite Function with an Asymptotic Polynomial 

Expansion 
 

An image of a Taylor polynomial approximation for two functions is shown in the figure below to illustrate 

the concept of polynomial approximation for a finite function.  

 

Extending the concept to Gaussian and Gamma functions, the images below illustrate how Hermitian and 

Laguerrian polynomials are suited to approximating Gaussian and Gamma random functions.  
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1.6. Disjunctive Kriging  
 

Disjunctive Kriging involves the use of polynomial asymptotic expansions to estimate values at unsampled 

locations. Asymptotic polynomial expansions are used to define the global anamorphosis function based 

on the sample data and respective transformed values. This can be a Gaussian transform / Hermitian 

expansion or a Gamma transform / Laguerrian expansion depending on which distribution is deemed most 

appropriate for the attribute being measured. The polynomial expansion values calculated for sample 

values/locations can be used in conjunction with simple kriging to determine the transformed (e.g., 

normal score or “gamma score”) value at an unsampled location. The global anamorphosis function is 

used to determine the “raw” back transformed value of the attribute at the unsampled location. 

Disjunctive kriging is simple co-kriging of the polynomial expansion of all orders (so informed by relative 

location and polynomial values at neighboring sampled locations). The polynomial expansions considered 

are orthogonal basis; the covariance between polynomials of different orders is zero and the covariance 

of polynomials of different orders is linked to a single variogram model; as a result, disjunctive kriging 

becomes simple kriging of the polynomial values for the transformed data values and then a linear sum 

of the resulting polynomial values across orders. This approach allows for the calculation of an expected 

value at an unsampled location based on statistical distance of nearby data points and reflecting the local 

CCDF as embedded in the polynomial values across orders at nearby sampled locations. 

Gaussian Distribution PDF

Hermite Polynomials

Gamma Distribution PDF

Laguerre Polynomials
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The polynomial expansion can be chosen to correspond to a given random function selection. While 

disjunctive kriging using Gaussian / Hermitian expansions is well documented as a substitute for simple 

MultiGaussian kriging, its application with other families of bivariate function families (such as 

MultiGamma) has not been as thoroughly described. Work has been done testing the relative 

appropriateness of a given expansion for modeling conditional PDF’s by comparing a Hermitian expansion 

for the PDF and a Laguerrian expansion for the PDF, with the actual PDF from the exhaustive data set. 

 Application in Sequential Simulation 

 

The polynomial approximation technique combined with disjunctive kriging can be used to define an 

expression for the local CCDF. Such polynomial expansions reflect the choice of bi-variate random function 

family.  Ortiz (2004) provides a good overview of fitting a finite function (any finite function is acceptable) 

with an expansion of Hermite Polynomials. The approach is to set the function equal to a weighted sum 

of the Hermite Polynomial values as shown below. The coefficient value for a given order n is solved by 

calculation of the expected value of the function and the Hermite Polynomial of a given order n. The same 

author provides a method of determining the CDF function (indicator function IY(u;yc) = prob y ≤ yc) of a 

given distribution based on Hermite Polynomial values as shown in the equations below. (note: G(y) is the 

standard normal CDF) 

𝐼𝑌(𝑢; 𝑦𝑐) =  ∑ 𝜓𝑝𝐻𝑝(𝑌(𝑢))           (11)

𝑃

𝑝=0

 

𝜓0 = 𝐺(𝑦𝑐)            (12) 

𝜓𝑝 =
1

√𝑝
𝐻𝑝−1(𝑦𝑐)𝑔(𝑦𝑐)           (13) 

These equations let us choose (or observe) our experimental moments (mean and variance of Gaussian 

PDF g(yc) above) which inform the coefficients of the Hermitian expansion. The approximation of the CDF 

is a sum of products at each order of a coefficient (based on experimental moments) and the Hermitian 

polynomial. At each unsampled location we apply disjunctive kriging to determine the polynomial values 

based on the polynomial values calculated at the sample locations. We then apply the above equations 

(derived from the observed moments) to model the local CCDF function. A random draw can then be 

taken from this CCDF to arrive at a simulated value for the unsampled location. 
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2. Simulation Methodology 

2.1. Prior Work 
 

Emery (2006) also completed work on the use of various bivariate random function families to 

estimate ore body attributes at unsampled locations with Disjunctive Kriging. Work has also been 

completed (Emery 2002) using isofactorial representation of the bivariate random function family and 

disjunctive kriging to simulate ore body parameters (“sequential isofactorial simulation”). In this instance, 

while the theory is well described, the practical implementation including the approach sampling the local 

conditional cumulative distribution function is not.  

2.2. Simulation Approach 
 

A sequential simulation algorithm was developed for sequential simulation using disjunctive kriging 

of Hermitian polynomials. The Hermitian polynomials up to a selected order “N” are calculated at all 

sampled locations based on normal score values. A variogram model is fitted to normal score values. 

Simple kriging is completed to solve for the Hermitian values of each order at the unsampled location. The 

covariance between polynomials of an order N is based on the normal score value variogram with the 

resulting correlogram value raised to the power “N”. 

Once the Hermitian values at the unsampled location are determined, the CCDF function at that 

location, (as a weighted sum of the Hermitian values) is used for the random draw. The weightings for 

each order Hermitian polynomial in the CCDF are derived based on equations 11, 12 and 13 shown in 

section 1.6 above. The result is an equation for the CCDF value at an unsampled location as a function of 

the actual (unknown) variable value at that location.  

Sequential simulation draws a random number between zero and one and assumes this to be the 

CCDF value. Because the CCDF (by definition) is a monotonic function, a guess and check bounding 

algorithm was designed to iteratively determine the corresponding actual variable value that the CCDF 

random draw corresponds to (within a specified tolerance). The algorithm evaluates the CCDF value for 

the endpoints and midpoint of a range of the underlying variable; this range is then halved based on the 

relative location of the randomly drawn simulated CCDF value. The process is repeated until the drawn 

CCDF value is deemed close enough to one of the calculated CCDF values. 

3. Results 
 

It is possible to compare the results of the Hermitian disjunctive kriging simulation algorithm against 

frequently utilized traditional sequential Gaussian simulation programs. For such a comparison a 200x200 

empty array was initialized and a seed value of -1.5 is placed in the center of the array. The seeded array 

is run through both the Hermitian disjunctive kriging algorithm, and GSLIB’s Sequential Gaussian 

Simulation (“SGS”) program. The results of both are shown below and indicate that simulation using 

Hermitian polynomials appears to accurately simulate a multi-Gaussian distribution.  
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4. Extensions of Methodology 

4.1. MultiGamma Random Function  
 

Wilson and Wragg (1973) provide three methods “…for the reconstruction of a continuous probability 

density function f(x) from given values of the moments of the distribution.” One of these methods involves 

use of an asymptotic expansion, specifically an expansion of Laguerre Polynomials. This approach is suited 

to distributions that are expected or observed to be “Gamma like”. This contrasts with the Hermite 

Polynomial expansions described by Edgeworth that are appropriate for distributions observed or 

expected to be “Gaussian like”.  

When dealing with the Hermitian expansion, the Gaussian distribution function is characterized by its 

mean and variance, which may be determined in a straightforward manner from the values of the sample 

data. In the Laguerrian case, the Gamma distribution function is characterized by a shape parameter α 

and a rate parameter β that are not as easily determined from the sample data. The shape and rate 

parameter are key inputs to the PDF and CDF functions for Gamma distributions. In order to utilize the 

Laguerrian expansion, we require a value for the shape and rate parameters. Using certain integral 

conditions, these parameters can be determined according to the below equations based on the first 

(mean) and second (variance) moments of the transformed sample data (Mustapha and Dimitrakopoulos 

2010).  

𝛼 =  
2𝑚1

2 − 𝑚2

𝑚2 − 𝑚1
2       (14) 

𝛽 =  
𝑚1

𝑚2 − 𝑚1
2          (15) 
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With these parameters calculated, the equations of the Laguerrian expansion and polynomials are set out 

below. 

𝑃(𝑧) ≈ 𝑃∞
𝛼(𝑧) =  ∑ 𝑟𝑛𝐿𝑛

(𝛼)
(𝑧)𝜙𝐺𝐴𝑀(𝑧)      (16)

∞

𝑛=0

 

𝜙𝐺𝐴𝑀(𝑧) =  
𝛽

𝛤(𝛼 + 1)
𝑧𝛼𝑒−𝑧      (17) 

𝐿𝑛
(𝛼)

(𝑧) =  ∑
(−1)𝑖

𝑖!

𝑛

𝑖=0

(
𝑛 + 𝛼

𝑛 − 𝑖
) 𝑧𝑖      (18) 

𝑟𝑛 =
𝑛! 𝛤(𝛼 + 1)

𝛤(𝑛 + 𝛼 + 1)
∑

(−1)𝑖

𝑖!

𝑛

𝑖=0

(
𝑛 + 𝛼

𝑛 − 𝑖
) 𝛽𝑖𝑚𝑖       (19) 

It can be seen above that the PDF value as determined by the Laguerrian expansion is fully defined by the 

observed moments of order 1, 2, …, i of the available (and relevant) sample data. In the Hermitian case, 

as previously described, the PDF is determined based on the observed cumulants of the empirical 

distribution where such cumulants can be directly related to observed moments. These equations let us 

choose (or observe) our experimental moments which inform the coefficients and thus define the global 

PDF distribution function. The approximation of the local PDF (or CDF) is a sum of products across orders 

of a coefficient (based on experimental moments) and a Laguerre or Hermite polynomial. The Laguerrian 

case equations are more complicated than the Hermitian case; requiring both higher orders of cumulants 

and also incorporation of theoretical moments. 

Mustapha and Dimitrakopoulos (2010) noted that a Laguerrian expansion around a Gamma distribution 

“…is suited for simulating high complex natural phenomena that deviate from Gaussianity”. They 

examined certain data sets comparing a Hermitian expansion for the PDF and a Laguerrian expansion for 

the PDF, with the actual PDF from the exhaustive data set. When applying the Hermitian expansion, they 

utilized certain practical corrections to the Hermitian expansion such as the Saddle Point Approximation. 

The results showed better performance of a Laguerrian expansion relative to a Hermitian expansion of 

the same order (which had negative probabilities) or a Hermitian expansion with Saddlepoint 

Approximation (which was undefined in certain areas).  

The choice of theoretical distribution used to develop the PDF function to approximate the empirical CCDF 

is very important under truncation. While in the case of an infinite expansion, any choice of finite 

developing distribution function will allow for convergence of the approximation, selection of a 

theoretical distribution that more closely fits the empirical data should reduce the order of the expansion 

required to achieve a certain quality of fit. This in turn allows for more efficient computational 

implementation. Application of our mapping tool for determination of the “best” suited random function 

family (and associated orthogonal polynomial expansion) has potential to improve computational 

efficiency and accuracy of ore body parametric simulation. 
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4.2. Destructuration of Grade 
 

Emery (2008) identified that the destructuration of grade can be modelled by “randomizing” the 

correlation between the orders of the polynomials (i.e., the correlations itself becomes a random 

function). This correlation random function can range between a regular BiGaussian (or BiGgamma) model 

with no destructuration or a full mosaic model representing complete destructuration. This approach 

takes the pure BiGaussian (and BiGamma) model and extends them to more generalized “Hermitian” and 

“Laguerrian” models respectively. Without this adjustment, the BiGaussian and BiGamma models would 

be described as diffusive. The diffusive property mathematically requires that the correlogram of the 

polynomials of order “p” are equal to the correlogram of the variable raised to the power p. Practically, 

the diffusive property means that non-uniform connectivity of values (i.e. connectivity of extreme values) 

cannot be reflected in the model. This is due to the higher order correlograms trending to zero as the 

power p increases (pure nugget). 

In order to create non-diffusive more generalized models, the correlation coefficient is randomized. The 

correlation coefficient of higher orders is similarly the randomized correlation coefficient raised to that 

specific order p. A Beta distribution for the randomized variable is often selected with parameters βρ(h) 

and β(1-ρ(h)) where the scalar parameter β takes a value between zero and one. Under this condition, it 

can be shown that the correlation coefficient for order “p” is described by the equation below rather than 

the diffusive case where it is ρ(h)p (Chiles and Delfiner 1999) 

∀𝑝 ∈ 𝑁∗   𝑇𝑝(ℎ) =  
𝛤(𝛽)𝛤(𝛽𝜌(ℎ) + 𝑝)

𝛤(𝛽𝜌(ℎ))𝛤(𝛽 + 𝑝)
         (20) 

The above equation allows us to calculate the correlation coefficient for our Hermitian and Laguerrian 

polynomial expansions to create non-diffusive models. The question of how to choose the best β for a 

given data set is not readily apparent. Emery (2005) incorporates the randomizing distribution as a 

function of β into the equation for variograms of order ω, such that using the equations previously 

outlining a selection criterion can be calculated; the clear drawback of this approach is the inability to 

separate the choice of bi-variate random function family and choice of destructuration (β). An alternate 

approach described by Emery in 2002 involves the use of the relation between the observed variogram 

and madogram as shown in the equation below for the Laguerrian case. A similar expression can be 

derived for the Hermitian case. 

𝛾1(ℎ) =  
𝛤(𝛼 +

1
2)𝛤(𝛽)

√𝜋𝛤(𝛼)𝛤(𝛽 +
1
2)

𝛤(
𝛽𝛾(ℎ)

𝛼 +
1
2)

𝛤(
𝛽𝛾(ℎ)

𝛼 )
        (21) 

These equations will be used to create a tool that optimizes the choice of β to the available data. In 

practical terms the equation above can be thought of as a method to assess the amount of destructuration 

present in a data set. 
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5. Conclusions 
 

A sequential simulation algorithm has been developed with the ability to model non-Gaussian random 

function based simulations. Polynomial expansions are used to encode information content in the 

available sample data. Disjunctive kriging is used to model the CCDF function at unsampled locations. 

Unsampled locations are visited in a random order and at each location a random draw is made from the 

local CCDF function. The simulation algorithm is applied with a Gaussian random function model and 

associated Hermitian polynomial expansion. The results under specific conditioning data are in line with 

the results from a traditional sequential Gaussian simulation verifying the accuracy of the approach. 

Incorporation of a Gamma random function model (and associated Laguerre Expansion) is outlined. 

Consideration on using a coefficient of destructuration to allow simulation of non-diffusive random 

functions is also described. 
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