
Annual Report 2021
Paper 2021-02

Fundamentals of deep Q-Learning 1

Sebastian Avalos (sebastian.avalos@queensu.ca)
Julian M Ortiz (julian.ortiz@queensu.ca)

Abstract

Reinforcement learning has achieved remarkable performances on oriented deci-
sion making problems. The agent-environment framework provides the principles
for mapping states-and-actions to expected value rewards, maximizing the long-
term total reward. The mapping function can be retrieved from look-up tables
when the space of states and actions are small enough to maintain computational
efficiency, or parametrized as an approximation of the underlying mapping. In
real life problems, the environment is often incomplete, and the space of states
and actions are non trackable or computationally unmanageable. Recent ad-
vances on Deep Learning have led to implement deep neural networks to approx-
imate the mapping function, referred as deep Q-Learning. In this brief article,
we review the building blocks of reinforcement learning with a final focus on the
principles of deep Q-Learning.

1. Introduction

The field of reinforcement learning (RL) has its roots and draws insights from neurosciense, psy-
chology, and computer science (Ludvig et al., 2011). Collaborative efforts have helped to strengthen
the RL framework, providing methods and models on how agents (animals, humans or robots) learn
to make decisions from past experiences of agent-environment interaction (Sutton and Barto, 2018).
From a computational perspective, reinforcement learning is the framework of machine learning
in which an agent is trained to maximize the reward over time as a result of chosen actions in a
sequence of interactions within a particular environment. The learning process follows the princi-
ples of sequential decision making, where actions influence the immediate reward, the environment
state, and all subsequent environment states, feasible actions and possible states. Therefore, the
agent must learn the evaluate the quality of taking an action based on the current environment
state and according to the immediate reward and delayed rewards.

To introduce concepts, we explore the following reduced-learning setting: every time, an agent
must make a choice between k different actions, receiving an immediate reward drawn from a sta-
tionary distribution, without perceiving and/or altering the environment. The aim is to maximize
the total reward in a finite number of choices (time steps). Let at be the action selected at time
step t, and rt the corresponding reward. The value of selecting the action a corresponds to the
expected reward, and can be expressed as:

q∗(a) .= E[rt|at = a] (1)

1Cite as: Avalos S, Ortiz JM (2021) Fundamentals of deep Q-Learning, Predictive Geometallurgy and Geostatistics
Lab, Queen’s University, Annual Report 2021, paper 2021-02, 14-21.

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 14

mailto:sebastian.avalos@queensu.ca
mailto:julian.ortiz@queensu.ca

Maximizing the total reward is trivial when q∗(a) is known for all possible actions a: select the
action with highest value. Naturally, we do not have access to the real value q∗(a) but it can be
estimated based on previous experiences. Let qt(a) be the estimated value of selecting action a at
time step t. Without considering when an action was taken but only the number of times it was
taken and each of the corresponding rewards, a simple way to estimate the value of an action is by
the sample-average method as:

qt(a) =
∑t−1

i=1 ri · ⊮ai=a∑t−1
i=1 ⊮ai=a

(2)

where ⊮ai=a is 1 when ai = a, and 0 otherwise. The action with highest value is drawn as:

at = arg max
a

qt(a) (3)

The action(s) with highest estimated value is called a greedy action. We refer to the process of
selecting a greedy action as exploitation, since the agent is exploiting the accumulated knowledge
of previous experiences. We refer to the selection of non-greedy action as exploration. The latter
allows the agent to update the estimate of non-greedy actions. The trade-off between exploration
and exploitation is non trivial. Nevertheless, we can easily argue that exploration is fundamental
in the early stages of a learning process, whereas exploitation is desired when certain stationarity
is observed in the estimated values, in the latest stages of a learning process.

When looking at a single action that has been selected n times, we can compute the current
estimated value qn as:

qn+1 = r1 + r2 + · · · rn−1 + rn

n

qn+1 = 1
n

(
rn + n− 1

n− 1

n−1∑
i=1

ri

)

qn+1 = 1
n

(
rn + (n− 1) · qn

)
qn+1 = qn + 1

n

(
rn − qn

)
(4)

The previous update representation, from qn to qn+1 knowing the last reward rn and the number
of times that the action has been taken n, has the structure:

NewEstimation←− OldEstimation + α ·
[
Target−OldEstimation

]
(5)

The expression
[
Target−OldEstimation

]
denotes the error between the desired value and the

old estimation. The parameter α controls the rate in which the estimation value is updated, and
is often expressed as a function of the time step and the corresponding action, αt(a).

The distribution of reward probabilities has been assumed constant over time. In this scenario,
an equal weight of previous experience is reasonable, such as αt(a) = 1

n , which changes over time.
For non-stationary situations, the intuition suggests to increase the weights to recent experiences
and decrease the weights of old ones. Using a constant value α ∈ (0, 1] satisfies the desired property,
transforming Eq. 4 into a weighted sum of the past reward and past estimation :

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 15

qn+1 = α · rn + (1− α) · qn (6)

By recursion, Equation 6 can be rewritten as a function of past rewards and the initial estimation
as:

qn+1 = (1− α)n · q1 +
n∑

i=1
α · (1− α)n−i · ri (7)

To guarantee convergence over time, we need α to satisfy both:
∞∑

t=1
αt(a) =∞ ,

∞∑
t=1

α2
t (a) <∞ (8)

where the former expression implies enough steps to overcome initial conditions, while the latter
expression implies a decrease in the step-size during learning to secure convergence. Note that
the latter expression is not met when alpha is set constant, a desired property in non-stationary
situations.

Until now, the learning process has focused on the estimation of the action values to maximize
a total reward. Either stationary or non-stationary, the value of each action has been assumed
unrelated to the context of learning. When the context is considered, the agent must learn how to
evaluate actions conditioned to different situations. The dynamic of learning in a agent-environment
framework is described in the following section.

2. The agent-environment framework

The interaction agent-environment is often discretized in time steps. Time steps are not required
to represent the formal time dimension but rather sequential decisions steps. Formally, at each
time step t = 0, 1, 2, 3, ..., T , the agent perceives the partial or complete state of the environment
st ∈ S and must take an action at ∈ A = {1, ..., |A|}, receiving a single reward rt+1 ∈ R ⊂ R and
modifying the environment into its next state st+1, as shown in Figure 1.

Environment

Agent

at

A
ct
io
n

R
ew

ard

rt+1

rt

State

st

st+1

Figure 1: Reinforcement learning, agent-environment interaction scheme.

An agent-environment interaction results into a sequence of events (trajectory) in the form:

s0, a0, r1, s1, a1, r2, s2, a2, ... (9)

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 16

Whenever T , A, and R are finite subsets, the learning framework can be formally represented
and described as a finite Markov Decisions Process (MDP). In MDP, the entire system is charac-
terized by the mapping function from the pair [state, action] into [next state, reward]. Formally,
let s′, s ∈ S, r ∈ R, and a ∈ A, the probability p of transition from state s into s′ by taking action
a and receiving the reward r is written as:

p(s′, r|s, a) .= P (St+1 = s′, Rt+1 = r|St = s, At = a) ,
∑
s′∈S

∑
r∈R

p(s′, r|s, a) = 1 (10)

where p represents the dynamic of the entire MDP system. Therefore, the probability of choosing
an arbitrary action a depends only on the current state s and not on previous states.

Similar to the value estimation of an arbitrary action a in the non-associate task of Equation 7,
we need to estimate the value of taking an arbitrary action a at any state s, denoted as q(s, a).
The cumulative reward Gt, at time step t, can be expressed from Equation 9 into Equation 11 as:

Gt = rt+1 + rt+2 + · · ·+ rT (11)

with T as the final step. The previous formula works on finite oriented tasks in which the order
of rewards is irrelevant and the agent-environment interaction sequence is finite. In order to
make Equation 11 suitable for continuous oriented tasks or when the order of rewards matters, a
discounted factor γ ∈ [0, 1[is introduced, such that the cumulative discounted reward is computed
as:

Gt ≈ rt+1 + γ · rt+2 + γ2 · rt+3 + γ3 · rt+4 + ... + γT −t−1 · rT =
T∑

k=0
γk · rt+k+1 (12)

From now on, we assume T →∞ without loss of generality. As the sequence of rewards depends
on the sequence of actions taken over the sequence of states, we look for an estimator of the pair
state-action, in terms of future rewards, to guide the agent. The agent acting behaviour on the
environment is referred as the agent’s policy.

Let π(a|s) be the probability of chosen action a at the state s under the agent’s policy π. The
state-value function, vπ(s), represents the expected total reward of the state s for policy π, and is
formally expressed as:

vπ(s) = Eπ
[
Gt

∣∣st = s
]
≈ Eπ

[∞∑
k=0

γk · rt+k+1
∣∣∣st = s

]
(13)

We define qπ(s, a) as the action-value function, corresponding to the expected return of taking
action a at state s under the policy π at time step t, and then following the same policy. It is
computed as:

qπ(s, a) = Eπ
[
Gt

∣∣at = a, st = s
]
≈ Eπ

[∞∑
k=0

γk · rt+k+1
∣∣∣at = a, st = s

]
(14)

Both, Equation 13 and Equation 14 can be estimated by previous experiences, similar to the
simple average-method described earlier, when the number of states and actions are small enough
to be stored and retrieved. When the space of action and/or state makes the store-and-retrieve

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 17

process inefficient, vπ and qπ can be parametrized, reducing the number of parameters describing
the functions. When the space of actions and/or space become unmanageable or incomplete during
the process of learning, the use of deep neural network architectures serves to map State-Actions
with NextState-Rewards. The latter is referred as deep Q-Learning, and we elaborate on this
concepts in the following section. Before that, we introduce the concept of Bellman equations by
rewriting Equation 13 as:

vπ(s) = Eπ
[
rt+1 + γ ·Gt+1

∣∣st = s
]

vπ(s) =
∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
[
r + γ · Eπ

[
Gt+1

∣∣st+1 = s′]]
vπ(s) =

∑
a∈A

π(a|s)
∑
s′∈S

∑
r∈R

p(s′, r|s, a)
[
r + γ · vπ(s′)

] (15)

The last expression translates into weighting each possible future response [r + γ · vπ(s′)] by
their probabilities of occurrence π(a|s)p(s′, r|s, a). In other words, it represents the value of a state
as a function of the possible immediate rewards and value states.

Similarly, Equation 14 can be rewritten as:

qπ(s, a) = Eπ
[
rt+1 + γ ·Gt+1

∣∣at = a, st = s
]
≈ Eπ

[
rt+1 + γ ·

∞∑
k=0

γk · r(t+1)+k+1

∣∣∣at = a, st = s

]
(16)

and by the principles of the Bellman equation, restated as:

qπ(s, a) = Eπ
[
rt+1 + γ · qπ(st+1, at+1)

∣∣at = a, st = s
]

(17)

We have from Equation 17 that the state-action value qπ(s, a) can be decomposed into the imme-
diate reward rt+1 of taking action a on the state s at time step t plus the discounted state-action
value function qπ(st+1, at+1) at the next time step t + 1, recursively.

3. Deep Q-Learning

The Q-Learning technique was proposed by Watkins and Dayan (1992) as a simple approach
for learning by successively improving the assessment of particular actions at particular states.
The action-value function in Q-Learning is updated according to the expression:

q(st, at)← (1− ε) · q(st, at) + ε ·
[
rt+1 + γ ·max

at+1
q(st+1, at+1)

]
(18)

where γ ∈ [0, 1[and ε ∈ [0, 1] are the discount factor and learning coefficient. When ε : 1 the action-
value function is updated according to the received reward and discounted maximum action-value
at the next state. When ε : 0 the action-value is not updated. This resembles the trade-off between
exploration and exploitation. Indeed, we define an iteration as the moment when the agent has
interacted with the environment through the entire time period or until the interaction has ended.
Then, let εi be the epsilon value at the ith iteration, the εdecay parameter controls the rate between
exploration and exploitation as the training progresses, as εi+1 ← εi · εdecay. Figure 2 illustrates
the effects on εi by using εdecay : 0.99

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 18

Figure 2: Epsilon greedy method. Exploration - exploitation dilemma.

The previous formulation requires to build a look-up table of size S × A × T for all possible
states (discrete), actions and time steps. Thus, the applicability of Q-Learning techniques has
been constrained by computational power and limited to low-dimensional state and action spaces.
In response, Mnih et al. (2015) proposed the Deep Q-Learning framework in which a deep neural
network is trained to approximate the function action-value function q(st, at). The latter directly
extends the state space from a discrete to a continuous space. An extended theoretical and statis-
tical analysis can be found at Fan et al. (2020). In the following, we focus on the main principles
of Deep Q-Learning. We rewrite Equation 17 as function of states-and-actions as:

qπ(st, at) = Eπ

[
r(st, at) + γ ·

∑
st+1∈S

p(st+1|st, at) max
at+1

qπ(st+1, at+1)
]

(19)

Solving Equation 19, the optimal policy π corresponds to:

π(s) = arg max
a ∈ A

q(s, a) (20)

The action-value function q(s, a) is approximated by a deep neural network (DQN) that out-
puts a set of action-values of the form qθ(s, ·) where θ corresponds to the set of neural network
parameters. The use of a DQN allows the implementation of two tricks that accelerate the learning
stage: replay memory and target network.

LetM be the set of experiences (memory set) stored in the form (st, at, rt+1, st+1). Let qθ∗(s, a)
be a target network. The learning process starts with an empty memory setM = ∅, random weights
on the network parameter θ, and initial state s0. The weights of the target network are initialized
as θ∗ = θ. At each iteration ith, we start from t = 0 until the interaction agent-environment ends.
At each time t, the following steps are carried out:

1. With probability εi a random action is selected, and with probability (1 − εi) the action is
selected by arg max

at ∈ A
qθ(st, at).

2. Once the action is executed, the immediate reward and the new state are stored in M.
3. Randomly draw n transition samples from M:

{
(sj , aj , rj , s′

j)
}

j ∈ [n]
4. For each sample, compute the target value yj = rj + γ · arg max

a ∈ A
qθ∗(s′

j , a)

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 19

5. Update the network parameters using an optimization algorithm with a temporal learning
rate αt. For instance, using the gradient descent method:

θ ← θ − αt ·
1
n

n∑
j=1

[yj − qθ(sj , aj)] · ∇θqθ (21)

6. Every τ time steps, update the target network parameters as θ∗ ← θ.

As a result, after training, the optimal policy πθ(s) with respect to qθ(s, a) is obtained as:

πθ(s) = arg max
a ∈ A

qθ(s, a) (22)

4. Final remarks

We have covered the building blocks of reinforcement learning but many aspect have been
left aside for simplicity, such as temporal difference learning, On-policy and Off-policy, SARSA,
Monte Carlo tree search, exhaustive search, among others methods and principles. From the
revised fundamentals, special attention is suggested on the following aspects when applying deep
Q-Learning:

Environment representation To obtained valid, realistic and/or functional state-value and
action-value functions, the environmental must be adequately represented in such a way
that the agent is capable to interpret the differences between different states.

Reward The reward drives and guides the agent learning process. The reward must be in line
with the long-term goal and must avoid pitfalls in which the agent would maximize the total
reward without necessarily achieving the long-term goal.

Deep neural network The architecture of the network must be in accordance with the nature
of the environment (spatial-temporal). Ensemble architectures would improve the capacity
of approximating the action-value function in deep Q-Learning.

5. Acknowledgements

We acknowledge the support of the Natural Sciences and Engineering Research Council of
Canada (NSERC), funding reference number RGPIN-2017-04200 and RGPAS-2017-507956.

6. Bibliography

Fan, J., Wang, Z., Xie, Y., Yang, Z., 2020. A theoretical analysis of deep Q-learning, in: Learning
for Dynamics and Control, PMLR. pp. 486–489.

Ludvig, E.A., Bellemare, M.G., Pearson, K.G., 2011. A primer on reinforcement learning in the
brain: Psychological, computational, and neural perspectives. Computational neuroscience for
advancing artificial intelligence: Models, methods and applications , 111–144.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness, J., Bellemare, M.G., Graves, A.,
Riedmiller, M., Fidjeland, A.K., Ostrovski, G., et al., 2015. . nature 518, 529–533.

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 20

https://arxiv.org/pdf/1901.00137.pdf
https://10.4018/978-1-60960-021-1.ch006
https://10.4018/978-1-60960-021-1.ch006
https://www.datascienceassn.org/sites/default/files/Human-levelcontrol through deep reinforcement learning

Sutton, R.S., Barto, A.G., 2018. Reinforcement learning: An introduction. MIT press.

Watkins, C.J., Dayan, P., 1992. Q-learning. Machine learning 8, 279–292.

© Predictive Geometallurgy and Geostatistics Lab, Queen’s University 21

https://mitpress.mit.edu/books/reinforcement-learning-second-edition
https://link.springer.com/content/pdf/10.1007/BF00992698.pdf

	Introduction
	The agent-environment framework
	Deep Q-Learning
	Final remarks
	Acknowledgements
	Bibliography

