Author Archives: Julian Ortiz Cabrera

[Oct 2021] New paper on Mineral Resource Classification with Machine Learning

The paper “On the use of machine learning for mineral resource classification” by Ilkay S. Cevik, Oy Leuangthong, Antoine Cate and Julian M. Ortiz was recently published in Mining, Metallurgy and Exploration, Vol 38, pages 2055-2073. The paper was developed by proposes a methodology to perform mineral resource classification in a consistent and automated manner with a sequence of machine learning methods. This ensures a simple application that can be easily audited and that can be tuned by a Qualified Person, to ensure results are consistent with the uncertainty associated to the resources and the geology.

The methodology combines a repeated application of unsupervised random forest over subsets of blocks in the model, to determine a distance matrix, which is then clustered to discriminate between different classes of blocks. This is then used in a supervised application of random forest to classify the blocks and determine their probability of belonging to each class (measured, indicated and inferred). The method is demonstrated in real deposits, and compared with a Qualified Person classification done with conventional methods.

The paper can be found here: On the Use of Machine Learning for Mineral Resource Classification | SpringerLink

[Oct 2021] Mehmet Altinpinar completes M.A.Sc.

Mehmet successfully completed his M.A.Sc. in Mining Engineering. Mehmet defended on October 15, 2021, his thesis “Synthetic High Resolution Block Model for Benchmarking Mining Technologies“. His committee was formed by Prof. Takis Katsabanis and Prof. Qian Zhang, as examiners, Prof. Julian Ortiz as supervisor, and Prof. Asli Sari as cosupervisor. The exam was chaired by Prof. Christopher Pickles.

Congratulations Mehmet!

[Sep 2021] Sebastian Avalos completes Ph.D.

On August 25, 2021, Sebastian Avalos defended his Ph.D. entitled: “Advanced Predictive Methods Applied to Geometallurgical Modelling“. The examination committee consisted of Prof. Kamran Esmaeili (Mining Engineering, U. of Toronto), Prof. Xiaodan Zhu (Electrical and Computing Engineering, Queen’s University), Prof. Asli Sari (Mining Engineering, Queen’s University), the co-supervisor Prof. Willy Kracht (Mining Engineering, Universidad de Chile) and the supervisor Prof. Julian Ortiz (Mining Enginering, Queen’s University). Prof. Takis Katsabanis was the Chair of the examination committee (Mining Engineering, Queen’s University).

Congratulations!!

[Apr 2021] New paper about a data-driven definition of geological domains with domain knowledge

Fouad Faraj spent a summer as a graduate intern. During these months he developed an idea to apply a statistical based multivariate approach to define geological domains. The main idea is to first split the global distribution of multiple attributes (geochemical concentrations) into sub-populations that follow a parametric distribution. This leads to an optimization problem to fit these distributions. Then, every sample in the database can be allocated into one of the sub-populations, initially at random, and then samples belonging to different domains are swapped with a greedy algorithm, to reduce the MSE over the expected distribution. Amazingly, this leads to consistent spatial clusters. Domain knowledge is input during the selection of the discriminant attributes used in the first step. Theoretically this could be extended to many variables, although, as usual, a good fit of the resulting distributions would require a large number of samples (and the computational cost would increase significantly).

The full paper can be downloaded here: https://doi.org/10.1007/s42461-021-00428-5

For a limited time, the paper can be read here: https://rdcu.be/ciQlU

A Simple Unsupervised Classification Workflow for Defining Geological Domains Using Multivariate Data

by Fouad Faraj & Julian M. Ortiz

Abstract

Within the natural resource industries, there is an increasing amount of data and number of variables being recorded when sampling a site. This has made multivariate geospatial datasets more difficult to analyze, in particular the definition of estimation or simulation domains used in geostatistical analysis. Establishing these domains is typically the first step for any subsequent geostatistical workflows or modeling. Domains are traditionally established using categorical data such as lithology, mineralization, or alteration from geological logging and are aimed at identifying distinct populations with particular geological, spatial, and statistical features. The manual logging process is time-consuming and costly but is required because defining geologically homogenous volumes is crucial for the planning, extraction, and processing of natural resources. Classical clustering methods have aided in analyzing the multivariate datasets, but the resulting clusters from these methods do not correlate well with geological logging and do not allow practitioners to input their knowledge of the domain in the clustering process. In this work, a simple unsupervised classification workflow is presented which allows the practitioner to input domain knowledge by selecting relevant variables to cluster reasonable geological domains. This can be used as a tool to aid the manual logging procedure or as a tool to establish domains for different uses such as defining zones with different rock hardness distributions which allows the corresponding volumes to be sent to appropriate mills for efficient mineral processing. The performance of the workflow is assessed on a mining dataset using the geochemical information and validated with the geological logging.

[Nov 2020] New paper in Natural Resources Research: Simulation of Synthetic Exploration and Geometallurgical Database of Porphyry Copper Deposits for Educational Purposes

The December issue of Natural Resources Research features our paper “Simulation of Synthetic Exploration and Geometallurgical Database of Porphyry Copper Deposits for Educational Purposes” in collaboration with Mauricio Garrido (Ph.D. candidate in the Department of Geology at Universidad de Chile), who spent a short research internship in our lab. The paper is also coauthored by Dr. Exequiel Sepulveda (University of Adelaide) and Dr. Brian Townley (Universidad de Chile).

The paper can be downloaded here.

Simulation of Synthetic Exploration and Geometallurgical Database of Porphyry Copper Deposits for Educational Purposes

Mauricio Garrido (Department of Geology, Universidad de Chile), Exequiel Sepulveda (School of Civil, Environmental and Mining Engineering, The University of Adelaide), Julian Ortiz (The Robert M. Buchan Department of Mining, Queen’s University), and Brian Townley (Department of Geology, Universidad de Chile)

Abstract

The access to real geometallurgical data is very limited in practice, making it difficult for
practitioners, researchers and students to test methods, models and reproduce results in the field of geometallurgy. The aim of this work is to propose a methodology to simulate geometallurgical data with geostatistical tools preserving the coherent relationship among primary attributes, such as grades and geological attributes, with mineralogy and some response attributes, for example, grindability, throughput, kinetic flotation performance and recovery. The methodology is based in three main components: (1) definition of spatial relationship between geometallurgical units, (2) cosimulation of regionalized variables with geometallurgical coherence and (3) simulation of georeferenced drill holes based on geometrical and operational constraints. The simulated geometallurgical drill holes generated look very realistic, and they are consistent with the input statistics, coherent in terms of geology and mineralogy and produce realistic processing metallurgical performance responses.
These simulations can be used for several purposes, for example, benchmarking
geometallurgical modeling methods and mine planning optimization solvers, or performing risk assessment under different blending schemes. Generated datasets are available in a public repository.

[May 2020] New paper in Mathematical Geosciences: Variogram-based descriptors of rock texture images

In the May 2020 issue of Mathematical Geosciences, the paper Variogram-based descriptors for comparison and classification of rock texture images was published. This work is the result of the Ph.D. in Mining Engineering of Gonzalo Diaz, at Universidad de Chile, and is the result of collaboration with Prof. Jorge Silva, hist student Rodrigo Lobos, and the researcher from ALGES laboratory, Alvaro Egaña. The paper can be downloaded here.

Variogram-Based Descriptors for Comparison and Classification of Rock Texture Images

Gonzalo F. Diaz (Department of Mining Engineering / Advanced Mining Technology Center, Universidad de Chile), Julian M. Ortiz (The Robert M. Buchan Department of Mining, Queen’s University), Jorge F. Silva (Department of Electrical Engineering, Universidad de Chile), Rodrigo A. Lobos (Department of Electrical Engineering, University of Southern California), Alvaro F. Egaña (Department of Mining Engineering / Advanced Mining Technology Center, Universidad de Chile)

Abstract

Rock characterization is typically performed by geologists in mining companies and involves the analysis of several meters of drill-hole samples to describe distinctive geological properties. In this procedure, rock texture is not typically taken into account despite its importance given its close relation with metallurgical responses and, therefore, all mineral processes. To support the work of geology experts, this research seeks to obtain rock texture information, discriminating it from digital images through image processing and machine learning techniques. For this purpose, a geologist-labeled digital photograph database was used with different rock texture classes (including geological textures and structures) from drill-hole samples. To characterize rock texture, three texture descriptors based on variographic information are proposed, which summarize data contained in the image pixels, focusing on local structural patterns that numerically describe its texture properties. Then, based on a methodology of image texture comparison, which could be extended to classify different types of rock texture classes, a quantification of the system’s performance was obtained. The results showed a high discrimination among common texture classes using compact variogram-based features that outperformed previous methods applied on the same rock texture database.

[May 2020] New paper in Applied Energy: Copper Mining: 100% solar electricity by 2030?

In March 2020, this publication came out. Work done in collaboration with colleagues from University of Stuttgart, German Aerospace Center, University of Waterloo, University of British Columbia and Universidad de Chile. The paper can be downloaded here.

Copper mining: 100% solar electricity by 2030?

Jannik Haas (Department of Stochastic Simulation and Safety Research for Hydrosystems (IWS/SC SimTech), University of Stuttgart / Department of Energy Systems Analysis, Institute of Networked Energy Systems, German Aerospace Center (DLR)), Simón Moreno-Leiva (Department of Stochastic Simulation and Safety Research for Hydrosystems (IWS/SC SimTech), University of Stuttgart), Tobias Junne (Department of Energy Systems Analysis, Institute of Networked Energy Systems, German Aerospace Center (DLR)), Po-Jung Chen (Mechatronics Engineering, University of Waterloo), Giovanni Pamparana (Norman B. Keevil Institute of Mining Engineering, University of British Columbia), Wolfgang Nowak (Department of Stochastic Simulation and Safety Research for Hydrosystems (IWS/SC SimTech), University of Stuttgart), Willy Kracht (Department of Mining Engineering, University of Chile / Advanced Mining Technology Center (AMTC), University of Chile), Julián M. Ortiz (Robert M. Buchan Department of Mining, Queen’s University)

Abstract

Extracting copper is energy-intensive. At the same time, copper is a key material for building the energy systems of the future. Both facts call for clean copper production. The present work addresses the greenhouse gas emissions of this industry and focuses on designing the future electricity supply of the main copper mines around the world, from 2020 to 2050, using distributed solar photovoltaic energy, storage, and a grid connection. We also consider the increasing energy demand due to ore grade decline. For the design, we use an optimization model called LEELO. Its main inputs are an hourly annual demand profile, power-contract prices for each mine, cost projections for energy technologies, and an hourly annual solar irradiation profile for each mine. Our findings show that it is attractive for the mines to have today a solar generation of 25% to 50% of the yearly electricity demand. By 2030, the least-cost solution for mines in sunny regions will be almost fully renewable, while in other regions it will take until 2040. The expected electricity costs range from 60 to100 €/MWh for 2020 and from 30 to 55 €/MWh for 2050, with the lower bound in sunny regions such as Chile and Peru. In most locations assessed, the low cost of solar energy will compensate for the increased demand due to declining ore grades. For the next steps, we recommend representing the demand with further detail, including other vectors such as heat and fuels. In addition, we recommend to include the embodied emissions of the technologies to get a more complete picture of the environmental footprint of the energy supply for copper production.